
CVE-2024-39425:
A File System TOCTOU LPE

case study
Vulnerability Analysis Report

Vulnerability Analysis Report | 02

Summary

3. Analysis

2. Executive Summary

1. Our Malware Lab

2.1 Impact

08

05

5. Disclosure Timeline 19

4. Conclusions 18

03

07

3.2 Initial analysis 10

3.3 NTFS symbolic links and junctions 12

3.4 Attacking the update process 12

3.5 NTFS OpLocks 13

3.6 Exploitation 13

3.7 Mitigation 17

3.8 Vulnerable executable 17

3.1 Introduction to common local privilege
 escalation techniques

09

This document is protected by copyright laws and contains material proprietary to the Defence Tech Holding S.p.A Società Benefit.
It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in
any manner without the express prior written permission of Defence Tech Holding S.p.A Società Benefit. The receipt or possession
of this document does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything
that it may describe, in whole or in part.

Vulnerability Analysis Report | 03

1
Our Malware Lab

Vulnerability Analysis Report | 04

Defence Tech Malware Lab daily perfor-
ms dissection of malware with the aim of
timely understanding the technological
evolutions of attacks, consolidating the
knowledge of necessary to make more
effective and faster the process of inci-
dents responding, contributing to sprea-
ding information about emerging threats
into the expert’s community and among
its clients.

Malware Lab analysts are continuously
engaged in searching and experimenting
new analysis tools, for increasing accu-
racy and scope of action with regard to

the proliferation of new evasion and
anti-analysis techniques adopted by
malwares.

The Malware Lab is also committed to
the development of proprietary tools for
malware analysis and supporting the
management and response of incidents.

Besides malware analysis, Malware Lab
ideated and implemented an automatic
process of extraction of Indicators of Com-
promise (IOC) that is daily run on dozens
of new malwares, intercepted in the wide
for populating our Knowledge Base.

1. Our Malware Lab

CORRADO AARON VISAGGIO
Group Chief Scientist Officer & Malware Lab Director
a.visaggio@defencetech.it

Vulnerability Analysis Report | 05

2
Executive Summary

Vulnerability Analysis Report | 06

2. Executive Summary

One interesting attack surface of traditio-
nal software is the automatic update me-
chanism. This is a critical component of
the software lifecycle and most impor-
tantly, often one of the privileged compo-
nents of the software.

In fact, in the typical enterprise environ-
ment users don't have administrative
rights on their machines, preventing them
from installing or updating software on
their own, this quickly becomes a mainte-
nance nightmare for the IT department.
To solve this problem, most software
vendors implement automatic update
mechanisms that allow the software
updates without user intervention.

This means that in some way, the
software must have the ability to elevate
its privileges to perform the update, this
is what makes the automatic update me-
chanism a prime target for security rese-
archers and attackers alike.

In this report we will analyse CVE-
2024-39425¹ ², a flaw our Malware Lab
team discovered in the automatic update
mechanism of Adobe Reader. This vulne-
rability allows a local attacker to escalate
privileges to SYSTEM, bypassing the UAC³
mechanism and any limitations imposed
on the user, such as not being part of the
Administrators group.

¹ https://nvd.nist.gov/vuln/detail/CVE-2024-39425
² https://helpx.adobe.com/security/products/acrobat/apsb24-57.html

https://learn.microsoft.com/en-us/windows/security/application-security/application-control/user-account-control/

Vulnerability Analysis Report | 07

2.1 Impact

Exploitation of CVE-2024-39425 requi-
res pre-existing access to the target ma-
chine, either physical or remote. Further-
more, exploitation requires multiple
steps making it not trivial to exploit.
However, if successfully exploited, the
attacker can escalate privileges to
SYSTEM, effectively taking full control of
the machine.

The vulnerable component is ‘AdobeAR-
MHelper.exe’ version ‘1.824.460.1067’

and previous ones. According to the ven-
dor’s advisory⁴ it is distributed as part of
Acrobat Reader versions 20.005.30636,
24.002.20965, 24.002.20964, 24.001.
30123 and earlier.

This issue was responsibly disclosed to
Adobe and at the time of writing has been
fixed by the vendor, we urge all users that
may be affected to update the software
to latest version.

⁴ https://nvd.nist.gov/vuln/detail/CVE-2024-39425

Vulnerability Analysis Report | 08

3
Analysis

Vulnerability Analysis Report | 09

3. Analysis

3.1 Introduction to common local privilege
 escalation techniques

We described this vulnerability as a flaw in the automatic update mechanism, we can
abstract the problem to a more general one, why did we decide to investigate this speci-
fic component of the software?

Essentially, whenever an application follows this design patter:

• A graphical desktop application that is operated by a normal unprivileged user
• A privileged system service that communicates with the user-facing component
 to execute commands

It is a potentially interesting target, since a single flaw in the privileged component could
allow us to perform privilege escalation for example by executing arbitrary programs as
system, or overwriting files in the Windows directory.

It's worth noting that these are most commonly logic bugs rather than classical memory
corruption issues, meaning that they are harder to detect and affect software written in
languages considered safe such as C# or Rust.

One-click updates are the norm especially in enterprise software, but that is not the only
kind of behaviour that makes use of this split-architecture design, so there is a lot of
room for research in this area.

In this report we will look into techniques that abuse symbolic links and race conditions
to fool the privileged component into executing an arbitrary MSI install package.

Vulnerability Analysis Report | 10

3.2 Initial analysis

As the first step, we investigated the
automatic update mechanism of Adobe
Reader.

The ‘AdobeARMservice’ service (‘armsvc.
exe’) handles seamless background
updates for Adobe products, it works by
processing update requests from
low-privileged applications and executing
the update process as SYSTEM. The ser-
vice relies on the ‘AdobeARMHelper.exe’
process to perform the actual update,
this process is launched as SYSTEM and
is responsible for validating the signature
of the update package before installing it.
The service uses the ‘RegisterServiceCtr-
lHandlerW’⁵ API to receive commands
from other applications.

When it receives the command ‘0xAB’ it
creates a shared memory area used to
receive a series of parameters used to
initiate the update process. The shared

To prevent abuse of this feature the following conditions must be met:

• The MSI file must have a valid signature using Adobe's code signing certificate.
• The MSI product ID must be ‘{A6EADE66-0804-0000-1959-000000000000}’

memory section name is ‘Global\\
{E8F34725-3471-4506-B28B-471458
17B1AE}_’ followed by a string that
depends on the system's hard disk serial
number.
A client application fills the shared
memory area with the required parame-
ters and sends the command ‘0xB4’ to
start the update.

‘armsvc’ then launches ‘AdobeARMHel-
per.exe’ as SYSTEM to process the
request, most of the parameters provided
by the client are passed to ‘AdobeAR-
MHelper.exe’ as command line arguments.

When the update request contains the
following parameters ‘/Svc /USER:SY-
STEM /ArmUpdate /MSI ArmUpdate-
Exe:’, the update program will try to
install the file ‘AdobeARM.msi’ present
in the folder specified by the ‘ArmUpda-
teExe’ parameter.

⁵ https://learn.microsoft.com/en-us/windows/win32/api/winsvc/nf-winsvc-registerservicectrlhandlerw

Vulnerability Analysis Report | 11

The process boils down in the following major steps (note that it has been simplified
for clarity):

1. The MSI file is opened and the file handle is kept as a lock to prevent modification.

2. The signature of the file is validated using ‘WinVerifyTrust’⁶. This ensures that the
signature is valid. Any signature is accepted at this stage, keep this in mind for later.

3. The certificate of the signature is validated using `CryptQueryObject`⁷. This ensu-
res that the signature is from Adobe.

4. Using MSI-Specific APIs the product ID is validated.

5. The MSI file is copied to a cache folder in the program's directory and installed
using ‘MsiInstallProductW’⁸.

a. The copy happens by manually reading the content of the file handle that was
locked in step 1.

The vulnerability arises from the following assumption: while the file is locked, it can't be
modified. While that is usually true for local drives, its path can be replaced with the use
of folder junctions. This can be abused because the update and verification process as a
whole opens the file multiple times rather than using the initial locked handle.

⁶ https://learn.microsoft.com/en-us/windows/win32/api/wintrust/nf-wintrust-winverifytrust
⁷ https://learn.microsoft.com/en-us/windows/win32/api/wincrypt/nf-wincrypt-cryptqueryobject
⁸ https://learn.microsoft.com/en-us/windows/win32/api/msi/nf-msi-msiinstallproductw

Vulnerability Analysis Report | 12

3.3 NTFS symbolic links and junctions

Symbolic links are a feature present in
most filesystems that allows creating a
file or folder that references another
filesystem object. The use case for this
feature is, for example, to create shor-
tcuts to files or store a single copy of a file
needed in multiple locations without
duplicating it.

On Windows the default filesystem is
NTFS, which supports symbolic links,
however these can only be created by
administrators. This defeats the purpose
of escalating privileges, but there is a
trick: other than traditional symlinks,
NTFS supports directory junctions, which
can be created by non-administrators.

Directory junctions are like symlinks, they
allow linking a directory to another arbi-
trary directory, making it appear as if the
contents of the target directory are inside
the junction. The typical way to create a
directory junction is using the `mklink`
command with the `/J` flag.

Junctions are implemented by the
lower-level primitive of NTFS: reparse
points, programmatically they are crea-
ted by calling the ’DeviceIoContro’⁹ fun-
ction with the ‘FSCTL_SET_REPAR-
SE_POINT’¹⁰ control code, an example of
this can be found in the ”googleproject-
zero/symboliclink-testing-tools“ github
repository¹¹.

3.4 Attacking the update process

Suppose we can construct an attack environment by creating three folders:

1. ‘C:\install\real’ containing a valid Adobe-signed MSI file.
2. ’C:\install\fake’ containing a malicious msi.
3. ‘C:\install\target’ which is a symlink to either `real` or `fake`.

⁹ https://learn.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol
¹⁰ https://learn.microsoft.com/en-us/windows/win32/api/winioctl/ni-winioctl-fsctl_set_reparse_point
¹¹ https://github.com/googleprojectzero/symboliclink-testing-tools

Vulnerability Analysis Report | 13

Then we pass ‘C:\install\target’ as the ‘ArmUpdateExe’ parameter and precisely repla-
ce the symlinks after validation to trick it into installing the malicious MSI file.

This class of bugs is usually referred to as Time of Check to Time of Use (TOCTOU).

In practice, this is not trivial. As we have seen, the file which is installed is the first one
that is opened, meaning that to properly perform the attack we must swap it multiple
times winning several race conditions in a row. This requires some way to precisely syn-
chronize with the update process.

3.5 NTFS OpLocks

OpLocks are a feature of the NTFS filesy-
stem that allows a process to request a
lock on a file that is automatically relea-
sed when the file is closed. Most impor-
tantly, whenever a different process tries
to open the target file it is suspended,
and the original process is notified. The
only way to continue the execution of the
second process is by releasing the
OpLock in the first one.

This feature is meant to allow for safe file
sharing between processes, but it can be
abused to create a synchronization point
between the attacker and the update
process regardless of the privilege level.

An OpLock can be created with the ‘FSCT-
L_REQUEST_OPLOCK’¹² control code for
‘DeviceIoControl’.

3.6 Exploitation

The core of the exploit is that OpLocks allow us to hook specific points of the update pro-
cess. However, this kind of OpLock can only be set on a file we have exclusive access to,
once we unlock it and the update process opens it, we can't lock it again in preparation
for the next step.

¹² https://learn.microsoft.com/en-us/windows/win32/api/winioctl/ni-winioctl-fsctl_request_oplock

Vulnerability Analysis Report | 14

To work around this limitation, we can create a new copy of the file and change the `tar-
get` junction at each step of the process.

This means that in reality, the exploit will create many `real` and `fake` folder copies and
switch the folder junction every time it needs to synchronize with the next step. This can
be hard to visualize, so here's an example that shows the process by breaking down the
first stages of the attack:

1. The attacker creates the following folders:
• ‘C:\install\fake1’ containing a malicious msi that is being watched with an oplock.
• ‘C:\install\target’ which is a symlink to ‘fake1’.

2. The update process calls ‘CreateFile(msi_name, ...)’, the program execution stops
due to the oplock.
3. The attacker creates ‘C:\install\fake2’ and links ‘target’ to ‘fake2’; ‘fake2’ is now
being watched by an oplock. The oplock on ‘fake1’ is released causing the update
process to resume.
4. ‘CreateFile’ in ‘AdobeARMHelper’ now resumes, but the actual path has already
been resolved meaning that ‘fake1’ will be opened regardless of the symlink change.
5. ‘AdobeARMHelper’ calls ‘WinVerifyTrust’ which opens the file in ‘C:\install\target’
again, the program execution stops.
6. At this point ‘WinVerifyTrust’ is about to execute and we know the next step is
‘CryptQueryObject’, the attacker creates ‘C:\install\real1’ and links ‘target’ to it, then
resumes execution.
7. Like before, ‘WinVerifyTrust’ resumes and opens the file in ‘fake2’, however the
next attempt to open the file for ‘CryptQueryObject’ will open the file in ‘real1’.
8. This process is repeated as many times as needed.

The most important concept to understand here is that the oplock breaks when the file
is opened, after the junction is traversed. This means we can't "hook" a file while it's
being opened but only synchronize with a file creation to hook the next one, in a sense
the exploit works one step ahead of the update process.

Using procmon¹³ it's possible to visualize and debug the process, in Figure 1 we can see
how `AdobeARMHelper` is suspended as soon as it tries to open the file and `exploit.exe`
takes over until it releases the oplock.

¹³ https://learn.microsoft.com/en-us/sysinternals/downloads/procmon

Vulnerability Analysis Report | 15

Figure 1 Procmon view of hooking a file with an OpLock

Figure 2 Procmon stack analysis showing the function responsible for opening the file

Furthermore, double-clicking on the `CreateFile` event we can see the stack trace of the
process as seen in Figure 2, this allows us to see which stage of the update process we
reached. Using this we can count the number of times the file is opened and plan the
next steps of the attack.

Vulnerability Analysis Report | 16

Now that we can precisely control the
update process, we can write a piece of
software that automatically creates the
necessary folders and junctions, then
triggers and exploits the update process.

But there is one last hurdle to overcome.
We mentioned that the MSI signature is
validated using `WinVerifyTrust`, this fun-
ction takes both a file handle and a file
path, unfortunately this is the very same
file handle that is copied to the cache
folder and installed. This means that our
malicious MSI file must have a valid
signature, it doesn’t have to be a signatu-
re from Adobe since that is checked in a
different step. In practice, this is not a
problem as we could easily find multiple
leaked certificates online to sign our
demo payload for the attack.

Finally, we can put everything together
and build a PoC exploit. By profiling the
number of times each piece of the update
sequence opens the file using `CreateFile`
(or equivalent) we can synchronize the
replacement of the symlink in the various
steps of the process. On our test machine
this takes 18 replacements, the exact
number can depend on the Windows ver-
sion and third-party installed software,
this is because the number of times each
system API opens handles to the same
file is an implementation detail which may
vary with system updates versions or
third-party signature validation providers.

Our PoC hard-codes the right sequence
for our machine but we believe that wri-
ting a self-profiling version that works on
any system is possible.

Vulnerability Analysis Report | 17

3.7 Mitigation

The core issue here is that that the Signa-
ture verification, Certificate validation
and MSI file installation are not atomic in
regard to the file being opened.

While ‘CryptQueryObject’ can operate on
memory blobs, ‘MsiInstallProductW’
cannot and requires a path to the file,
making it impossible to do this safely in a
folder that is controlled by an attacker.

System services may use ‘SetProcessMi-
tigationPolicy’¹⁴ with the ‘ProcessRedi-

rectionTrustPolicy’¹⁵ option to block this
specific attack vector by only trusting
junctions that were created by admini-
strators. However, this may cause unin-
tended side effects when traversing legi-
timate junctions created by a user.

The approach taken by Adobe was to
implement a second signature verifica-
tion after the file is copied to the cache
folder, since the cache folder is only wri-
table by administrators this successfully
stops the attack.

3.8 Vulnerable executable

This vulnerability was discovered through internal research, we have no indication of
it being used in the wild.

File name

File version

SHA1

SHA256

AdobeARMHelper.exe

1.824.460.1067

79FD81761920001C3394BCB1E36892FC95B1FE4A

9977725432104DD5286CCFD06B485C8FDF7CBD63143EA62EA5E218E5768C6703

https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setprocessmitigationpolicy

https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-process-mitigation-redirection-trust-policy

Vulnerability Analysis Report | 18

4
Conclusions

Vulnerability Analysis Report | 19

4. Conclusions

This bug is a good example of how a see-
mingly minor issue can be leveraged to
escalate privileges. When developing
software, it's important to consider the
security implications of every step of the
process, especially when dealing with
untrusted data.

As for businesses, it's important to have
a good security posture, in this case this
kind of attack can be prevented by using a
good EDR solution that can detect and
block privilege-escalation behaviour.

Symlink-based attacks are not new and
somewhat noisy, it is usually possible to
track them down from logs even when
they are used to attack a previously unk-
nown vulnerability.

This report confirms which is fundamen-
tal to keep the system updated in order to
prevent attackers to successfully exploit
new patched vulnerabilities such as our
discovery.

5. Disclosure Timeline

• June 2024 - Vulnerability discovered by Malware Lab team.
• June 20, 2024 - Report submitted to the vendor.
• August 15, 2024 - The vendor released a fix and assigned CVE-2024-39425 to the issue.
• September 26, 2024 - Publication of this report.

Defence Tech Holding S.p.A Società Benefit
Via Giacomo Peroni, 452 - 00131 Roma

tel. 06.45752720 - fax 06.45752721
info@defencetech.it - www.defencetech.it

