
Agent Tesla
Malware Lab Analysis Report

Malware Lab Analysis Report | 02

Summary

4. Conclusions

3. Analysis

2. Executive Summary

1. Our Malware Lab

3.4 IOC

3.1.2 Stage 2

3.1.1 Stage 1

3.1 Anti-analysis techniques and unpacking

22

07

05

03

21

3.2 Technical analysis and behaviour 16

3.1.4 Sample Obfuscation 14

3.1.3 Stage 3 11

11

09

09

This document is protected by copyright laws and contains material proprietary to the Defence Tech Holding S.p.A Società Benefit.
It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in
any manner without the express prior written permission of Defence Tech Holding S.p.A Società Benefit. The receipt or possession
of this document does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything
that it may describe, in whole or in part.

Malware Lab Analysis Report | 03

1
Our Malware Lab

Malware Lab Analysis Report | 04

Defence Tech Malware Lab daily perfor-
ms dissection of malware with the aim of
timely understanding the technological
evolutions of attacks, consolidating the
knowledge of necessary to make more
effective and faster the process of inci-
dents responding, contributing to sprea-
ding information about emerging threats
into the expert’s community and among
its clients.

Malware Lab analysts are continuously
engaged in searching and experimenting
new analysis tools, for increasing accu-
racy and scope of action with regard to

the proliferation of new evasion and
anti-analysis techniques adopted by
malwares.

The Malware Lab is also committed to
the development of proprietary tools for
malware analysis and supporting the
management and response of incidents.

Besides malware analysis, Malware Lab
ideated and implemented an automatic
process of extraction of Indicators of Com-
promise (IOC) that is daily run on dozens
of new malwares, intercepted in the wide
for populating our Knowledge Base.

1. Our Malware Lab

CORRADO AARON VISAGGIO
Group Chief Scientist Officer & Malware Lab Director
a.visaggio@defencetech.it

Malware Lab Analysis Report | 05

2
Executive Summary

Malware Lab Analysis Report | 06

2. Executive Summary

Recent reports of the Italian CERT (Com-
puter Emergency Response Team) indi-
cate that malware campaigns involving
Agent Tesla are targeting Italy through
several Phishing attacks¹ ².

Agent Tesla³ is a .NET based keylogger
and information stealer which harvests
credentials, sending the data to its C&C
(Command & Control) via HTTPs, SMTP

(Simple Mail Transfer Protocol) or Tele-
gram channel.

This family malware has always been on
top of emerging trends, demonstrating
that it’s always evolving.

As shown in figure 1, Agent Tesla is the
most prevalent malware family in the last
24 hours on Malware Bazaar database⁴
(at the time of writing).

¹ https://cert-agid.gov.it/news/sintesi-riepilogativa-delle-campagne-malevole-nella-settimana-del-11-17-novembre-2023/
² https://cert-agid.gov.it/news/sintesi-riepilogativa-delle-campagne-malevole-nella-settimana-del-04-10-novembre-2023/
³ https://malpedia.caad.fkie.fraunhofer.de/details/win.agent_tesla
⁴ https://bazaar.abuse.ch/browse/
⁵ https://app.any.run/

Figure 1. MalwareBazaar most seen malware family

There are several variants of this family which uses different vectors to infect targets,
such as Office documents, JavaScript or VBS scripts. However, our analysis focuses on a
recent executable sample submitted to the AnyRun⁵ sandbox’s public tasks.

Malware Lab Analysis Report | 07

3
Analysis

Malware Lab Analysis Report | 08

⁶ https://github.com/dnSpyEx/dnSpy

3. Analysis

The assembly’s name is ‘Yawji’ as shown in the next figure.

The sample seems a legitimate program implemented with non-obfuscated namespace
and class names which contain obfuscated code to evade the heuristics of anti-malware
solutions.

Figure 2. Original sample opened in DnSpy tool

However, it’s important to note that this sample works as a Loader, carrying the next
stage of the infection in the resources. In the next sections, we will describe how we rea-
ched the final stage of the infection performing reverse engineering.

Malware Lab Analysis Report | 09

Figure 3. Async task builder which loads the next stage

3.1 Anti-analysis techniques and unpacking

3.1.1 Stage 1

The ‘Nywamxihj’ resource contains the
next stage which is loaded by creating an
asynchronous task. Asynchronous pro-
gramming is meant to allow code to be
executed concurrently without blocking
the execution of the calling thread.

C# implements asynchronous program-
ming by the compiler transforming asyn-
chronous code into a state machine,
wrapping it in an invisible class following a
well-known pattern. The state machine
keeps track of yielding execution when an
‘await’ is reached, and it resumes the exe-
cution when background task has finished.

The decompiler is typically able to recon-
structs the original method automatically
and hides the auto-generated backing
class for the asynchronous code, it is
possible to override this behaviour by
enabling the visualization of hidden types
in the settings.

However, in this case, the threat actors
have successfully manipulated the invisi-
ble class as the decompiler does not
recognise the pattern and hides the
actual code.

Malware Lab Analysis Report | 10

Figure 4. Decrypting the second stage with Cyberchef

The resource is encrypted using the TripleDES algorithm, and the decryption is perfor-
med by another asynchronous state machine, like the one described earlier.

The key and the Initialisation Vector (IV) are hardcoded as Base64 strings:

• IV: "ZiQWnMH+B/w=”
• KEY: "SWAoEGNRRkbxRS5xL8gkQw=="

We successfully managed to obtain the second stage by decrypting it using CyberChef⁷.

⁷ https://gchq.github.io/CyberChef/

Malware Lab Analysis Report | 11

3.1.2 Stage 2

The file we obtained is a DLL (Dynamic
Link Library) and its assembly name is
‘Nifmccwks’.

The static constructor of the DLL’s
module registers the event “AppDo-
main.CurrentDomain.ResourceResolve”
twice. The first registration is used for
dynamically loading the malware confi-
guration, while the second seems to be
employed for resolving dependencies
through the Costura library⁸.

This DLL contains a binary resource called

‘VHuKo’ which is used to dynamically load
a list of encrypted strings and a .NET PE
(Portable Executable) file. The strings are
encrypted using a simple XOR algorithm
while the PE file only contains more
encrypted binary resources and no exe-
cutable code. We will call any actions that
depend on this PE file “stage 3” although
all the relevant code was already loaded
as part of stage 2.

This boils down to loading the malware
configuration and performing process
injection to execute the malware payload.

3.1.3 Stage 3

Stage 3 includes a resource called ‘BeEw’ which is a binary file containing various encryp-
ted strings. All the strings used by the packer are dynamically loaded from this resource.
The data is encrypted using AES algorithm where the key and IV are derived from the
initial bytes of the file through various operations. Once the file has been decrypted the
code which loads the strings is dynamically generated through reflection by using the
“MethodBuilder” class, here the attackers manually build an in-memory .NET assembly
by concatenating raw .NET assembly “CIL” instructions.

⁸ https://github.com/Fody/Costura

Malware Lab Analysis Report | 12

Figure 6. Method to retrieve the strings

Figure 5. Code dynamically loaded

Before performing decryption, it checks
the name of the current assembly
against a list of names associated with
various automatic deobfuscation tools
such as ‘AsssemblyServer’, ‘SimpleAs-
semblyExplorer’, ‘’babelvm’, ‘smoketest’,
etc. The strings are then decrypted using
the XOR algorithm with a constant as the
key.

The decrypted strings are loaded into a
hashmap, which is stored using the “Ap-
pDomain.SetData” method. “SetData”

works like a map taking a key and a value
and storing them as global resources, in
this case the key is a string which is deri-
ved from the decryption process and is
saved in a global variable and the value is
the hashmap containing the strings.

To retrieve the strings, a helper method is
used which loads the hashmap from the
AppDomain resources and performs a
lookup of the requested key, the pattern
is implemented as shown in the following
figure.

Malware Lab Analysis Report | 13

It is worth noting that, unlike json, protobuf keys don’t have string names but only indi-
ces, making it impossible to understand the meaning of each field from the schema
alone.

At this point the malware-loading process executes multiple preliminary steps, such as
checking whether the system is a virtual machine using the WMI query “SELECT * from
WIN32_Bios” and creating persistence by writing to the “Run” registry key for the cur-
rent user. The execution of these steps depends on the configuration, in this sample only
a few are actually performed.

At this point the “main” method of stage
2 called ”Risotumpzv" executes, loading
the loader configuration from the stage 3
resource called “Obvyq”; after some tran-
sformations it results as a GZIP-com-
pressed protobuf ⁹ stream.

Protobuf is a serialization format, con-
ceptually like json, that produces binary
streams; it can be parsed and then prin-
ted in a human comprehensible format
using CyberChef: the output can be seen
in figure 7.

Figure 7. Decoded protobuf configuration

⁹ https://github.com/protocolbuffers/protobuf

Malware Lab Analysis Report | 14

Figure 8 . Main method of the loader

The final call of the "Risotumpzv” method performs the actual injection of the payload,
this configurable loader supports multiple dynamic loading techniques, but only one is
used according to the configuration.

The final malware payload is decrypted from the byte array “1.1.2.2” in the protobuf
using the same algorithm used for previous resources and then loaded through process
hollowing in a new instance of the currently running executable.

3.1.4 Sample Obfuscation

Once we obtained the final malware
payload, we observed that it is obfusca-
ted using some kind of control flow flat-
tening scheme.

Control flow flattening is the process of
splitting a function into its fundamental
blocks and rearranging them in a state-
machine like form removing the natural
structure of the program that program-

mers are familiar with. The function can
then be further obfuscated by adding
fake states or dynamically calculating the
next one with multiple possible paths
leading to impossible states.

An example of this kind of obfuscation is
the following picture containing the entry
point of the sample.

Malware Lab Analysis Report | 15

Figure 9. Obfuscated Main function

This obfuscation appears to be generated through a custom tool, as no generic deobfu-
scation tool could remove it. Therefore, the recurring CIL code patterns were analysed,
and it was found that the inserted obfuscated instructions follow a very regular format
which allowed to quickly write a custom deobfuscator to bypass it.

The next figure shows the same function as figure 9, but after being deobfuscated.

Figure 10. Deobfuscated Main function

Malware Lab Analysis Report | 16

3.2 Technical analysis and behaviour

Agent Tesla is a dangerous malware
family known for its info-stealing capabi-
lities and real-time recording of user acti-
vities through keylogging and screen-
shots.

A keylogger is designed to record and
monitor the keystrokes made on a com-
puter or a mobile device. Its purpose is to
capture the user’s keyboard inputs, which
may include credentials or sensitive
information.

An information stealer, also known as
Data-Stealer, is designated to collect
sensitive information from a compromi-

sed system. Its primary goal is to harvest
and exfiltrate valuable data, credentials,
or financial information.

Methods to perform such actions are
well-known and commonly detected by
antimalware software, which is why this
kind of malware is packed using complex
schemes like the one we just analysed.

The code was reversed, and classes and
methods have been analysed to under-
stand which kind of information is this
sample after. The next figure illustrates
how the sample starts to hook the key-
board keys pressed by the user.

Figure 11. Starting the keylogger

Malware Lab Analysis Report | 17

The ‘SetKeyboardHook’ function uses the
Windows API ‘SetWindowsHookEx’¹⁰ to
install an application-defined hook pro-
cedure to monitor the keystrokes.

The sample is not only able to record the
user’s keystrokes, but also to capture the

user’s screen activities. Unlike a traditio-
nal keylogger, a screen logger captures
visual information displayed on the
victim’s screen. Its purpose is to monitor
and record the user’s interactions, inclu-
ding private matters, opened applica-
tions, or visited websites.

The screen logger in this case retrieves the screen only while the machine is in use by
checking the last interaction from the user.

Agent Tesla is notorious for harvesting credentials of several applications such as FTP
clients, E-Mail clients, VPN clients and Browsers. A comprehensive list of targeted appli-
cations has been extracted and showed in the following table:

Figure 12. Screen logger

¹⁰ https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-setwindowshookexa

Application name Type

Claws Mail Mail client

Chromium Browser

Becky! Internet Mail Mail client

Malware Lab Analysis Report | 18

Outlook Mail client

Opera Mail Mail client

OpenVPN VPN client

NordVPN VPN client

MySQL Workbench Database manager

Mozilla Firefox Browser

Mailbird Mail client

JDownloader Download manager

Internet Download Manager Download manager

IncrediMail Mail client

Microsoft Edge Browser

Internet Explorer Browser

FTP Navigator FTP client

FTPGetter FTP client

FTP Commander FTP client

Foxmail Mail client

Flock Browser

FlashFXP FTP client

FileZilla FTP client

Falkon Browser

Eudora Mail client

eM client Mail client

DynDns Remote Access

Discord VoIP and Instant Messaging

Core FTP FTP client

Malware Lab Analysis Report | 19

Table 1. Targeted applications

WS_FTP FTP client

WinSCP FTP client

Windows Mail Mail client

TightVNC Remote Access

RealVNC Remote Access

UC Browser Browser

Trillian Instant Messaging

The Bat! Mail client

SmartFTP FTP client

Safari (Windows version) Browser

QQ Browser Browser

Psi Instant Messaging

Private Internet Access VPN client

PocoMail Mail client

Pidgin Instant Messaging

Paltalk VoIP and Instant Messaging

Agent Tesla often supports various extraction methods using Telegram or Discord as C2,
but in this case all the retrieved data and information is collected into a single file which
is sent to the C2 through a SMTP (Simple Mail Transfer Protocol) message as illustrated
in the next figure.

Malware Lab Analysis Report | 20

Figure 13. SMTP Message

Malware Lab Analysis Report | 21

3.3 IOC

Table 2. IoC

The next table contains IoC of the Agent Tesla sample analysed in this report.
Note: detection rates are as of time of writing, given the low rates they are likely to increase over the course
of the following days as AV vendors update their products.

Type Value Note

SHA-256 ed414c5cd76f7735a701b3c734bc8b7fc0d21e2143eae
7925e57451d49b256ea

Domain

PE file
VirusTotal
- 51/71

C2
AlienVault

VirusTotal - 1/88
gator3220[.]hostgator[.]com

https://www.virustotal.com/gui/file/ed414c5cd76f7735a701b3c734bc8b7fc0d21e2143eae7925e57451d49b256ea/detection

https://otx.alienvault.com/indicator/domain/gator3220.hostgator.com

https://www.virustotal.com/gui/domain/gator3220.hostgator.com

Malware Lab Analysis Report | 22

4
Conclusions

Malware Lab Analysis Report | 23

4. Conclusions

In conclusion, the recent findings from
the Italian CERT underscore a concerning
surge in malware campaigns featuring
Agent Tesla, specifically targeting Italy
through a series of phishing attacks.

Agent Tesla, a .NET-based keylogger and
information stealer, has proven to be a
dynamic threat, continuously evolving its
tactics to compromise user credentials.
The malware's adaptability is further
highlighted by its utilization of various
channels, including HTTPS, SMTP, and

Telegram, to transmit harvested data to
its Command & Control infrastructure.

Notably, our analysis of a recent sample
recovered from the AnyRun sandbox,
emphasizes the continuous evolution of
the Agent Tesla family. The prevalence of
Agent Tesla remains conspicuous,
making it a significant concern in the
cybersecurity landscape, demanding
continued vigilance and proactive securi-
ty measures to mitigate its impact.

Defence Tech Holding S.p.A Società Benefit
Via Giacomo Peroni, 452 - 00131 Roma

tel. 06.45752720 - fax 06.45752721
info@defencetech.it - www.defencetech.it

