
CVE-2024-22830
Vulnerability Analysis Report

Vulnerability Analysis Report | 02

Summary

2. Executive Summary

1. Our Malware Lab

2.1 Impact

05

03

07

3. Analysis

3.1 Introduction to kernel drivers attacks

08

09

3.2 Technical analysis 10

3.3 IOC 14

4. Conclusions 15

5. Disclosure timeline 17

This document is protected by copyright laws and contains material proprietary to the Defence Tech Holding S.p.A Società Benefit.
It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in
any manner without the express prior written permission of Defence Tech Holding S.p.A Società Benefit. The receipt or possession
of this document does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything
that it may describe, in whole or in part.

Vulnerability Analysis Report | 03

1
Our Malware Lab

Vulnerability Analysis Report | 04

Defence Tech Malware Lab daily perfor-
ms dissection of malware with the aim of
timely understanding the technological
evolutions of attacks, consolidating the
knowledge of necessary to make more
effective and faster the process of inci-
dents responding, contributing to sprea-
ding information about emerging threats
into the expert’s community and among
its clients.

Malware Lab analysts are continuously
engaged in searching and experimenting
new analysis tools, for increasing accu-
racy and scope of action with regard to

the proliferation of new evasion and
anti-analysis techniques adopted by
malwares.

The Malware Lab is also committed to
the development of proprietary tools for
malware analysis and supporting the
management and response of incidents.

Besides malware analysis, Malware Lab
ideated and implemented an automatic
process of extraction of Indicators of Com-
promise (IOC) that is daily run on dozens
of new malwares, intercepted in the wide
for populating our Knowledge Base.

1. Our Malware Lab

CORRADO AARON VISAGGIO
Group Chief Scientist Officer & Malware Lab Director
a.visaggio@defencetech.it

Vulnerability Analysis Report | 05

2
Executive Summary

Vulnerability Analysis Report | 06

2. Executive Summary

Kernel drivers are one of the most critical
components of the modern operating
system model. In Windows systems their
privileges are higher than those of the
Administrator user and as such are a
prime target for attackers. Abusing ker-
nel-level privileges is a common techni-
que used by rootkits to gain complete
control over a system.

In the Windows driver model, drivers are
considered a trusted part of the system
and as such they can only be loaded if
they have been approved and digitally
signed by Microsoft. This design greatly
reduces the possibility of attackers exe-
cuting arbitrary kernel code even when
they managed to escalate their privileges
to Administrator.

However, there are ways to bypass this
restriction, the most common one is to
abuse a vulnerability in a legitimate
signed driver. Attacking a vulnerable
driver means that the attacker may only
be able to execute a subset of the kernel
functions, but this is often enough to
achieve their goals.

One kind of attack technique that relies on
vulnerable drivers is called BYOVD (Bring
Your Own Vulnerable Driver). In this sce-
nario, after an initial infection, the attacker
deploys a legitimate but vulnerable driver
to the target system. Then, this driver is
used to gain kernel privileges needed, for
example, to disable security products
using "EDR-killer" solutions. Deploying a
driver requires Administrator privileges,
as such BYOVD attacks are often used as
a post-exploitation technique.

These attacks have been documented in
the wild, recent examples are Kasseika
Ransomware¹ and Lazarus Group².

This report describes CVE-2024-22830,
a vulnerability discovered by the Malware
Lab team in the Anti-Cheat Expert³
"ACE-BASE.sys" kernel driver. This is a
commercial "anti-cheat" solution that is
distributed as part of several popular
online games in China and a few in the
West.

³ https://www.tencentcloud.com/products/ace

https://www.trendmicro.com/en_no/research/24/a/kasseika-ransomware-deploys-byovd-attacks-abuses-psexec-and-expl.html

https://decoded.avast.io/janvojtesek/lazarus-and-the-fudmodule-rootkit-beyond-byovd-with-an-admin-to-kernel-zero-day/

Vulnerability Analysis Report | 07

Exploitation of CVE-2024-22830 can allow a local attacker to escalate privileges.

In particular, on systems where the ACE-BASE.sys driver is already installed and run-
ning, an attacker can exploit this vulnerability to escalate privileges from a low privileged
user account to Administrator or System.

On any other system, this driver can be used as a BYOVD vector to gain kernel privileges
and terminate EDR products.

As part of our efforts in preventing cyber-attacks, we also disclosed this vulnerability to
Microsoft through their vulnerable driver submission portal⁴ and later to the LOLDrivers⁵
project so that security vendors can update their definitions to detect and block this
driver from being used in illegitimate ways.

2.1 Impact

⁴ https://www.microsoft.com/en-us/wdsi/driversubmission
⁵ https://www.loldrivers.io/

Vulnerability Analysis Report | 08

3
Analysis

Vulnerability Analysis Report | 09

3. Analysis

Since drivers run in kernel mode they
can't interact with the user directly, they
usually communicate with user-mode
processes through system calls.

User-mode processes communicate with
drivers using IOCTLs (Input/Output Con-
trol) commands, these are requests that
include an integer called "control code"
that specifies the operation to be perfor-
med and optional input and output buf-
fers that are used to pass data between
the user-mode process and the driver.

A driver opts-in to receive commands
from user-mode processes by creating a
device object and binding it to a symbolic
link that is visible to non-kernel callers.
Drivers can further restrict access to their
interfaces by setting security descriptors
on the device object.

To communicate with a driver the
user-mode process must first open a
handle to its device object, and this is done
using the CreateFile⁶ function. Then, the
handle is used to send IOCTL commands
using the DeviceIoControl⁷ function.

Exploiting drivers can be as simple as
sending a valid IOCTL that performs an
unchecked operation, for example, termi-
nating an arbitrary process. Arbitrary
process termination is a dangerous ope-
ration because it can be used to termina-
te processes that are designated as "Pro-
tected Processes" or "Protected Process
Light" (PPL⁸), PPL is used by antimalware
products to prevent their termination by
attackers that have escalated their privi-
leges to Administrator.

3.1 Introduction to kernel drivers attacks

⁶ https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
⁷ https://learn.microsoft.com/en-us/windows/win32/api/ioapiset/nf-ioapiset-deviceiocontrol
⁸ https://learn.microsoft.com/en-us/windows/win32/services/protecting-anti-malware-services-

Vulnerability Analysis Report | 10

Note that since this driver is used to pro-
tect games from cheating, it makes use
of obfuscation techniques to make it
harder to reverse engineer. Any code
snippet in this report is a deobfuscated
version of the code, we will not delve into
the details of how the obfuscation was
defeated. Also, we will not be releasing
the exploit code to prevent abuse of our
findings.

During initialisation the driver creates a
device object and links it to the path ̀ \Do-
sDevices\Global\ACE-BASE`, this allows
user-mode processes to communicate
with it by opening a handle to `\\.\A-
CE-BASE`. The device is created with a
default security descriptor which allows
any user to send IOCTL commands to it.

We will refer to `ACE-BASE` as the "main
interface" of the driver, as we will see
later there are multiple interfaces that
are used to receive commands.

The main interface only accepts a small
number of IOCTLs, some of them are
used to initialise the rest of the driver
while others seem to be used for debug-
ging purposes. The most interesting con-
trol code is `0x221C24`, this command
executes a second IOCTL-like interface
that is authenticated and encrypted. We
will refer to this as the "inner interface".

When receiving a command for the inner
interface, the driver decrypts the input
buffer using a custom algorithm and
takes a 4-byte value that is used as com-
mand ID. Each request is authenticated
by looking for a hardcoded value that acts
as a password, this value is different for
each inner command. The driver also vali-
dates the identity of the caller process as
well as a timestamp with information
that is passed in the input buffer. This is
possibly to prevent replay attacks.

Once the command has been processed
by the inner command handler, the
output buffer is encrypted using RC4
before being sent back to the caller.

The commands provided by this interface
are used to initialise further components
of the driver and to register processes as
games to be protected. It is important to
note that sending unexpected commands
to this interface in can result in a crash of
the system.

Of particular interest is the command
`0x6A7F3C53` which is used to initialise
the global dynamically imported function
table. Figure 1 is an example of how fun-
ctions are dynamically imported by the
driver.

3.2 Technical analysis

Vulnerability Analysis Report | 11

Figure 1. Functions dynamically imported

One of the vulnerable commands we
identified in this driver is the ability to
terminate arbitrary processes, however,
the relevant API call does not appear in
the import table of the binary. This is
because it is dynamically imported. We
believe that this is a deliberate attempt to
hide the functionality of the driver, for
example to pass automated vulnerability
analysis tools.

After the right sequence of inner com-
mands is called, the driver is successfully
initialised and ready to protect games,
this can be observed by the creation of a
second device object that is accessible
under the path `\\.\{TF9AC12E-S60X-
E25G-N67G-IC8A82086DAN}`.

This is the driver's command interface
that exposes the dangerous functionality.

To communicate with the command
interface, the caller must first register
itself as a game using control code
`0x6A7F3C60` of the inner interface.

Much like the main interface, the com-
mand interface is also protected by
encrypting the input and output buffers,
each with yet another encryption algori-
thm. Here the driver exposes 70 different
commands, we only explored a subset of
them to write a proof-of-concept exploit,
but there are possibly other exploitable
commands that are not investigated in
this analysis. Figure 2 shows a few of the
commands we analysed.

Vulnerability Analysis Report | 12

Figure 2. Some of the labelled commands of the command interface

Among the commands we analysed, we
found functionality to control processes
and threads such as termination,
suspend and resume, file access, unre-
stricted access to processes’ virtual
memory and the system physical
memory.

In particular, for the sake of our proof of
concept, we used the 0x80002034 com-
mand to terminate Antimalware-pro-
tected processes and the 0x80002064

command to open a handle to any
SYSTEM process and inject code into it.

This was possible because command
0x80002064 uses ObOpenObjectByPoin-
ter⁹ by setting the AccessMode parameter
to KernelMode, this signals to the function
that the caller is trusted, and it does not
need to perform access checks. However,
the resulting handle is directly returned
to the user-mode client. This behaviour is
documented in Figure 3.

⁹ https://learn.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-obopenobjectbypointer

Vulnerability Analysis Report | 13

Figure 3. Call to ObOpenObjectByPointer, the highlighted
0 value indicates that this request is from a kernel caller

Figure 4. Access check present on most IOCTLs of the command interface

The vulnerability in this function is that it
is subverting the Windows process
access permissions by giving any process
that requests it access to any resource.
We have reason to believe that this is by
design. There is, in fact, a different IOCTL
command 0x8000200C that performs
the same operation but by setting Acces-
sMode to UserMode, thus respecting the

These permissions are set by a game during the initial protection request; however, the
effective permissions value comes from the request itself making it trivial for a custom
client to request the highest possible permissions.
The reasoning behind this model is likely that the permissions flags are only set by the
official Anti-Cheat SDK and can’t be manipulated by the games using it, but in practice
there is nothing preventing a rogue client from obtaining complete access.

Windows permissions model.

It seems the developers somewhat con-
sidered this attack scenario and every
IOCTL to the control interface is gated by
an access check with a 128-bit mask,
each bit acts as a permission flag to use a
specific IOCTL. Figure 4 shows an exam-
ple of these permission checks.

Vulnerability Analysis Report | 14

3.3 IOC

As of writing we have no evidence of this vulnerability being exploited in the wild.

 A copy of the sample is available in the LOLDrivers repository.

File name

File version

SHA1

SHA256

Installation path when used
by a legitimate application

ACE-BASE.sys

1.0.2202.6217

39402a9a3d90ba62938052089c8cbde9fb4e639f

7326aefff9ea3a32286b423a62baebe33b7325
1348666c1ee569afe62dd60e11

C:\Windows\System32\drivers\ACE-BASE.sys

Vulnerability Analysis Report | 15

4
Conclusions

Vulnerability Analysis Report | 16

4. Conclusions

The vulnerability described in this report
allows an attacker with a non-admini-
strator account to escalate their privile-
ges to system and to terminate security
products. This vulnerability was made
possible by a commercial product meant
to run with system privileges that was
not designed with security in mind; its
security model is entirely based on obfu-
scation through a number of hardcoded
secrets and the use of four different
encryption algorithms. Yet again, security
through obscurity has proven to not be a
viable strategy.

Our team analysed the software and
exposed the design flaws by building a
proof-of-concept exploit that demon-
strates how it can be abused. Although
the vendor decided to ignore our report,
we shared our findings with the security
community to protect users and busines-
ses from potential attacks.

It is important to keep security products
up to date and to follow best practices to
prevent BYOVD attacks, this includes
monitoring the software that is installed
on the system and logging new drivers
the first time they are loaded.

Vulnerability Analysis Report | 17

5
Disclosure timeline

Vulnerability Analysis Report | 18

5. Disclosure timeline

• September 2023 - Vulnerability discovered by Malware Lab team.

• September 25, 2023 - Report submitted to the vendor through the Tencent
 Security Response Centre.

• September 26, 2023 - The vendor closed the report as out of scope.

• January 2024 - Disclosure deadline reached.

• January 25, 2024 - CVE-2024-22830 assigned by MITRE¹⁰

• February 22, 2024 - Initial public disclosure, submission to the LOLDrivers project¹¹

• April 24, 2024 - Publication of this report

¹⁰ https://cve.mitre.org/
¹¹ https://github.com/magicsword-io/LOLDrivers/pull/168

Defence Tech Holding S.p.A Società Benefit
Via Giacomo Peroni, 452 - 00131 Roma

tel. 06.45752720 - fax 06.45752721
info@defencetech.it - www.defencetech.it

