
Common EDR
attack techniques

Malware Lab Analysis Report

Malware Lab Analysis Report | 02

Summary

4. Conclusions

3. Analysis

2. Executive Summary

1. Our Malware Lab

3.4 The Zemana case

3.3 Attacking EDR processes

3.2 Windows processes and process protection

3.1 Typical Anti-Malware architecture

15

08

05

03

09

10

12

13

3.5 BYOVD Mitigations 14

This document is protected by copyright laws and contains material proprietary to the Defence Tech Holding S.p.A Società Benefit.
It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in
any manner without the express prior written permission of Defence Tech Holding S.p.A Società Benefit. The receipt or possession
of this document does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything
that it may describe, in whole or in part.

Malware Lab Analysis Report | 03

1
Our Malware Lab

Malware Lab Analysis Report | 04

Defence Tech Malware Lab daily perfor-
ms dissection of malware with the aim of
timely understanding the technological
evolutions of attacks, consolidating the
knowledge of necessary to make more
effective and faster the process of inci-
dents responding, contributing to sprea-
ding information about emerging threats
into the expert’s community and among
its clients.

Malware Lab analysts are continuously
engaged in searching and experimenting
new analysis tools, for increasing accu-
racy and scope of action with regard to

the proliferation of new evasion and
anti-analysis techniques adopted by
malwares.

The Malware Lab is also committed to
the development of proprietary tools for
malware analysis and supporting the
management and response of incidents.

Besides malware analysis, Malware Lab
ideated and implemented an automatic
process of extraction of Indicators of Com-
promise (IOC) that is daily run on dozens
of new malwares, intercepted in the wide
for populating our Knowledge Base.

1. Our Malware Lab

CORRADO AARON VISAGGIO
Group Chief Scientist Officer & Malware Lab Director
a.visaggio@defencetech.it

Malware Lab Analysis Report | 05

2
Executive Summary

Malware Lab Analysis Report | 06

2. Executive Summary

Anti-malware or more recently Endpoint
Detection and Response (EDR) software
have become fundamental tools in the
modern cyber-security landscape: they
help businesses detect, and sometimes
prevent, threats such as malware, ran-
somware, phishing, and data breaches.
Such products are important for compa-
nies because they provide visibility into
the network, enables faster incident
response, and reduces the impact of
cyberattacks.

Consequently, any tool capable of circu-
mventing the policies imposed by EDRs is
inherently malicious and if used in a suc-
cessful attack, it can compromise the
security of the infected system and clear
the way to further stages of the attack. In
that regard, there is a particular case
which caught our attention.

A user going by the nickname of “spyboy”,
on a Russian-speaking forum named
Ramp, has recently advertised a piece of
software, supposedly able to circumvent
the most common EDR software on the
market.

At the time of the announcement, the
software was presented as an “EDR
killer” and was named “Terminator”. In a
demo-video¹ was shown how it could
terminate the process of a well-known
endpoint protection software, allowing
the execution of a malicious payload that
would have been otherwise blocked.

After much speculation from the cyber-
security community, researchers disco-
vered that the attack shown in the demo
was based on an uncommon vulnerable
driver part of a legitimate product named
“Zemana Anti-Malware”.

This kind of attack is called “Bring Your
Own Vulnerable Driver” or BYOVD for
short and consists in bundling a legitima-
te vulnerable driver along with the mali-
cious payload to exploit the elevated ker-
nel-level privileges of the driver and then
bypass the EDR products. So, using
drivers from legitimate software is neces-
sary because they are cryptographically
signed for distribution and Windows will
refuse to load unsigned drivers.

¹ https://streamable.com/h9n16x

Malware Lab Analysis Report | 07

There are many vulnerabilities in signed
drivers and not all of them have a CVE
number assigned, the most extensive
index is maintained by the loldrivers
project².

BYOVD attacks usually requires admini-
strator privileges to load the vulnerable
driver which may seem unlikely in a cor-
porate environment; however, this kind

of attack is on the rise with several recent
noteworthy campaigns such as in March³
and April⁴ 2023 and more⁵. Properly con-
figuring endpoints is already a huge step
towards mitigating this threat.

In this report we summarise the pro-
tection techniques used by modern EDR
software to prevent threats and how
BYOVD attacks can bypass them.

² https://www.loldrivers.io/
³ https://www.theverge.com/2022/10/16/23405739/micro-
soft-out-of-date-driver-list-windows-pcs-malware-attacks-years-byovd
⁴ https://www.bleepingcomputer.com/news/security/ransomware-gan-
gs-abuse-process-explorer-driver-to-kill-security-software/
⁵ https://www.crowdstrike.com/blog/scattered-spider-attemp-
ts-to-avoid-detection-with-bring-your-own-vulnerable-driver-tactic/

Malware Lab Analysis Report | 08

3
Analysis

Malware Lab Analysis Report | 09

3. Analysis

3.1 Typical Anti-Malware architecture

An anti-malware software solution is typically composed of three main components:

• A kernel driver that is used to intercept system-wide events such as process creation,
filesystem activity and network traffic;
• A user-mode service which receives and processes the events captured by the driver
applying the detection and analysis policies;
• A user-mode GUI process that lives in the session of the currently logged-on user,
implemented to show notifications and provide a way for the user to configure the rest
of the software. This component is typically not available in corporate-grade EDRs
where the end-user is not intended to receive notifications.

As explained in the following sections, some facilities are provided by Windows in the
form of process protection, while other must be implemented by the anti-malware itself.

This architecture is summarized in Figure
1. To prevent attacks on the system all
components of the anti-malware must
be protected from third-party applica-
tions that, in some cases, may even be
running as administrator.

The kernel component is implicitly pro-
tected by the operating system due to
the separation between user mode and
kernel mode, but the user-mode compo-
nents need particular attention to pre-
vent attacks based on termination or
process injection.

Figure 1. Typical architecture of an antimalware

Malware Lab Analysis Report | 10

3.2 Windows processes and process protection

Like any modern operating system, Win-
dows processes are isolated among
themselves using unique address spaces.
However, the operating system also
offers a set of APIs for cross-process
interaction: the simplest one is the pro-
cess termination, but debugging APIs
that allow reading or writing the private
address spaces of other processes are
available too.

For instance, if a process needs to inte-
ract with another one, the first will need
to open a handle to the second one using
the system API OpenProcess⁶. When
using OpenProcess, the caller also speci-
fies the “desired access”, that is a set of
flag to ask the operating system for spe-
cific access rights. Examples of these
flags are:

Clearly, not all these flags have the same security-wise impact, that’s why Windows
enforces isolation between users, preventing calls to OpenProcess when the source and
target processes belong to different users. This is done via Access Control Lists (ACLs)
which are pervasive in the Windows security model.

• PROCESS_TERMINATE: allows to terminate the target process
• PROCESS_QUERY_INFORMATION: allows to obtain information about the target
 process, such as the exit code after termination
• PROCESS_VM_READ: allows to read the private memory of the process

⁶ https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

Malware Lab Analysis Report | 11

⁷ https://learn.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/debug-programs
⁸ https://github.com/itm4n/PPLdump
⁹ https://github.com/itm4n/PPLmedic

However, isolation does not affect
accounts that are part of the Administra-
tors’ group, or more broadly, users and
groups who have been granted the SeDe-
bugPrivilege by an administrator.

This means that an administrator user
can potentially terminate or tamper with
any process on the system, and this is cle-
arly undesirable for security applications.

To support such use cases, Microsoft
introduced in Windows Vista the concept
of Protected Processes (PP) mainly
meant for DRM enforcement and later, in
Windows 8.1, the more flexible Protected
Processes Light (PPL): these are special
processes that are hardened from seve-
ral kinds of attacks, such as DLL Hijacking
and code injection. This is done by enfor-

cing signature checks on all the code
loaded in the process and rejecting
unsafe process access rights (such as
PROCESS_VM_READ) when OpenPro-
cess is called, even for administrators.

Without diving too much in the implemen-
tation details, executables signed with
specific Microsoft-approved certificates
can be launched as protected processes;
this includes several critical Windows
components and, starting with Windows
8.1, antimalware services as well.

Although historically they had several
vulnerabilities⁸ ⁹, PPL mitigate most pro-
cess injection vectors preventing rogue
administrators from terminating or
otherwise tampering with anti-malware
processes.

Malware Lab Analysis Report | 12

3.3 Attacking EDR processes

Given our overview on how antimalware
software operates, one can conclude that
the most general way to attack them is to
focus on the analysis service.

There is a variety of known attacks but
the most common consists in simply ter-
minating the service process. Termina-
ting a process on Windows requires ope-
ning a handle to it with the “terminate”
access right and then call the Terminate-
Process¹⁰ function. As we explained ear-
lier, this won’t work for protected proces-
ses since the system prevents opening
such handles for user mode applications
as part of the threat model of PPL.

However, there is one catch: kernel-mode
callers are considered trusted parts of
the system and can bypass access checks
for securable objects. This means that if
one were to use a kernel driver, they
could easily terminate any process.

The reason kernel drivers are considered
trusted is because Windows 10 Micro-
soft’s driver signing policy¹¹ only allows
loading drivers that were signed with an
Extended validation certificate and subse-

quently submitted to the Windows Har-
dware Developer Center for approval¹².
This means an attacker cannot simply
create a malicious driver because Win-
dows will prevent it from being loaded.

This works well in theory but given the
considerable amount of signed kernel
drivers being distributed in third party
products, some are bound to contain vul-
nerabilities. Typically, when talking about
driver vulnerabilities in this context we
mean logic bugs rather than memory cor-
ruption vulnerabilities: we are looking for
primitives that allow user mode applica-
tions to open handles to protected pro-
cesses through a driver that does not
implement appropriate safety checks.

A collection of such vulnerable drivers is
maintained by the loldrivers.io project,
their database currently counts more
than 300 of them.

There are several publicly available
proofs of concept showing how to per-
form a BYOVD attack, one such example
is Blackout by ZeroMemoryEx¹³.

¹⁰ https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-
processthreadsapi-terminateprocess
¹¹ https://learn.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing
¹² https://learn.microsoft.com/en-us/windows-hardware/drivers/install/kernel-mode-
code-signing-policy--windows-vista-and-later-
¹³ https://github.com/ZeroMemoryEx/Blackout

Malware Lab Analysis Report | 13

3.4 The Zemana case

OSINT sources¹⁴ revealed the vulnerable driver to be “zam64.sys” with SHA-256 hash:
543991ca8d1c65113dff039b85ae3f9a87f503daec30f46929fd454bc57e5a91

The driver has been uploaded to loldrivers¹⁵ which is how we obtained it for the analysis.
The function at address 0x11918 contains the logic relevant to process termination, so
we followed the cross-references of this function, which leads to the device IO request
handler. In the relevant snippet shown in Figure 2, we can see that it can be called from
user mode applications using the IOCTL code 0x80002048.

Information on this driver is scarce, however searching for the relevant IOCTL code pro-
duced interesting results: it seems the GitHub user “hfiref0x” posted a list of IOCTL
codes¹⁶ from this driver and potential ways to abuse them, in 2020. That means this
driver has been known vulnerable for at least three years without being noticed.

Either way, even now that the vulnerability is known, no CVE seems to be assigned for
this driver.

Figure 2. The IOCTL handler for terminating processes

¹⁴ https://twitter.com/SBousseaden/status/1663930984130134017
¹⁵ https://www.loldrivers.io/drivers/49920621-75d5-40fc-98b0-44f8fa486dcc/
¹⁶ https://gist.github.com/hfiref0x/e116dcf7e99b8d5d36c333a1f1048916

Malware Lab Analysis Report | 14

¹⁷ https://attack.mitre.org/techniques/T1068/
¹⁸ https://learn.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-
control/microsoft-recommended-driver-block-rules#blocking-vulnerable-drivers-using-wdac
¹⁹ https://learn.microsoft.com/it-it/windows/security/threat-protection/windows-defender-application-
control/wdac-and-applocker-overview

3.5 BYOVD Mitigations

BYOVD attacks usually require admini-
strative privileges in order to load the vul-
nerable driver and then open a handle to
it; the first line of defence against this
type of attack is properly configuring
endpoints to prevent regular users from
using accounts in the Windows’ Admini-
strator group.

Adversaries may exploit vulnerabilities of
the system or third-party software for
privilege escalation purpose. To prevent
the beginning of a full-scale attack, we
refer to the mitigation strategies docu-
mented by the well-known MITRE|
ATT&CK¹⁷.

It’s important to note that these drivers
typically come from software solutions
composed by multiple components, but
since the kernel-mode component can be
loaded standalone, BYOVD attacks
bundle the driver executable as part of

the payload. It doesn’t matter if the
target system does not have the vulne-
rable software installed.

Furthermore, many known vulnerable
drivers have not been issued a CVE,
which means they may fly under the
radar of traditional vulnerability scanning
software.

It’s possible to directly block the execu-
tion of known vulnerable drivers through
application control solutions such as
Windows Defender Application Control¹⁸
(WDAC)¹⁹. However, note that the Micro-
soft-provided driver block list is not regu-
larly updated and will not block all the
known drivers, this is perhaps due to
compatibility concerns, so we recom-
mend integrating it with other policies or
third-party tools to detect and block
exploitation attempts.

Malware Lab Analysis Report | 15

4
Conclusions

Malware Lab Analysis Report | 16

4. Conclusions

As we discussed in this report BYOVD attacks are dangerous since they can effectively
blind EDRs rendering the system defenceless, however they require specific circum-
stances to be successful which makes them not as widespread as other attack vectors:

1. First, the attacker needs to use a lesser-known vulnerable driver or a 0-Day otherwise
it will be blocked by security solutions.

2. Then, the adversary must obtain initial access to the target system using traditional
attack vectors.

3. At last, the attacker can escalate to Local Administrator privileges in order to launch
the attack.

These conditions make BYOVD harder to
execute successfully compared to more
common stealer or ransomware-based
attacks.

As for mitigations we recommend harde-
ning endpoints against privilege escala-
tion and to configure Application Guard
policies to prevent loading vulnerable
drivers. And, where applicable, monitor
event logs related to unexpected
third-party driver loads using SIEM or
EDRs capable of forwarding Windows
events. It is also important to develop a
robust cyber threat intelligence capability
to track active malicious campaigns and
to determine what type of threat could be
used against an organization, such as
software exploits or 0-Days.

More general mitigations include
applying restrictions to third-party
software execution, for example by
allowing only signed software, using
Windows AppLocker or similar technolo-
gies. Although BYOVD attacks use signed
drivers, the initial entry point must be a
regular application and blocking it is just
as effective. Keep in mind that malware
campaigns have been observed to abuse
stolen certificates to sign malicious
payloads, so this is just a mitigation and
not a solution.

Finally, one of the most important things
is to keep software updated as much as
possible, to reduce the attack surface
exposed by software bugs or outdated
certificate revocation lists.

Defence Tech Holding S.p.A Società Benefit
Via Giacomo Peroni, 452 - 00131 Roma

tel. 06.45752720 - fax 06.45752721
info@defencetech.it - www.defencetech.it

