
Credential brute forcing
leads to Linux malware

Malware Analysis Report



Malware Lab Analysis Report | 02

Summary

5. Conclusions

3. Overview of our honeynet

2. Executive Summary

1. Our Malware Lab

4.2 IOC

4.1.2  Stage 2 - DDoS Botnet

4.1.1  Stage 1 - Monero cryptocurrency miner

4.1 Technical analysis and behaviour

19

07

4. Analysis 10

05

03

18

15

13

12

This document is protected by copyright laws and contains material proprietary to the Defence Tech Holding S.p.A Società Benefit. 
It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in 
any manner without the express prior written permission of Defence Tech Holding S.p.A Società Benefit. The receipt or possession 
of this document does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything 
that it may describe, in whole or in part.



Malware Lab Analysis Report | 03

1
Our Malware Lab



Malware Lab Analysis Report | 04

Defence Tech Malware Lab daily perfor-
ms dissection of malware with the aim of 
timely understanding the technological 
evolutions of attacks, consolidating the 
knowledge of necessary to make more 
effective and faster the process of inci-
dents responding, contributing to sprea-
ding information about emerging threats 
into the expert’s community and among 
its clients.

Malware Lab analysts are continuously 
engaged in searching and experimenting 
new analysis tools, for increasing accu-
racy and scope of action with regard to

the proliferation of new evasion and 
anti-analysis techniques adopted by 
malwares.

The Malware Lab is also committed to 
the development of proprietary tools for 
malware analysis and supporting the 
management and response of incidents.

Besides malware analysis, Malware Lab 
ideated and implemented an automatic 
process of extraction of Indicators of Com-
promise (IOC) that is daily run on dozens  
of new malwares, intercepted in the wide 
for populating our Knowledge Base.

1. Our Malware Lab

CORRADO AARON VISAGGIO
Group Chief Scientist Officer & Malware Lab Director
a.visaggio@defencetech.it



Malware Lab Analysis Report | 05

2
Executive Summary



Malware Lab Analysis Report | 06

2. Executive Summary

While analysing our honeypot’s logs, we noticed a successful password spraying attack  
on the SSH service from multiple IP Addresses. This kind of Brute Force attack consists 
in using a single or small list of commonly used passwords, attempting to sign on to 
different valid accounts. The technique avoids the lockouts that would normally occur 
when trying to sign in on a single account by guessing the correct password from a set 
of candidate ones.

Figure 1 shows examples of malicious commands executed after a few attacks have 
been successfully accomplished:

Figure 1. Multiple attacks from different IPs

The attack studied in this report had a 
twofold purpose: turning the machine 
into a zombie to be included into a 
Botnet** through a modified hack-tool 
named “DDoS Perl IrcBot v1.0”*** and 
installing a cryptocurrency miner called 
PwnRig. The threat intelligence platform 
of Recorded Future**** reports that 
PwnRig is mainly associated with “8220 
Mining Group”***** threat actor, however 
we don’t have enough information to 
attribute this specific attack.

A Botnet is a network of compromised 
systems that receive commands and 
tasks from a Command & Control. Every 
infected and controlled machine is defi-
ned as a zombie. Instead, a cryptocurren-
cy miner is a malware that intensively 
exploits the targeted computer’s resour-
ces to mine cryptocurrencies. The 
malware takes advantage of the CPU or 
the GPU to solve complex mathematical 
calculations to get crypto coins as a 
reward.

https://attack.mitre.org/techniques/T1110/003/
https://attack.mitre.org/techniques/T1584/005/
https://gist.github.com/Cherishao/6186b7e38d9c1df861e2dd1fee8b39f9
https://www.recordedfuture.com/
https://cyware.com/news/8220-gang-targets-public-cloud-providers-with-cryptominers-and-irc-bots-753a82a3/?amp%3Bamp%3Bamp%3Bamp%3Bamp%3Bamp%3Bweb_view=true



Malware Lab Analysis Report | 07

3
Overview of

our honeynet



Malware Lab Analysis Report | 08

3. Overview of our honeynet

The malware under analysis was captu-
red by the honeynet we deployed, a set of 
honeypots that have the task of simula-
ting a real production network. The 
honeynet is configured to monitor, record 
and partially regulate any activity carried 
out within it. Each honeypot is specifically 
created to attract and trap intruders who 
attempt to penetrate the computer 
systems of organizations.

Particularly, our honeynet is based on 
T-Pot*, a multi-honeypot platform that 
implements more than 20 different pro-
tocols and various tools for the manage-
ment and visualization of captured data. 
This framework was installed on a virtual 
machine running Debian GNU/Linux 11 
(Bullseye) x86_64.

In particular, among the various honey- 
pots made available, the one targeted by 
the attack in analysis is Cowrie**.

Cowrie is an SSH and Telnet honeypot 
with medium to high interaction that was 
created to log Brute Force attacks and 
the attacker's shell interaction. In high 
interaction mode (proxy), it serves as an 
SSH and Telnet proxy to watch the 
attacker behaviour to another system. In 
medium interaction mode (shell), it emu-
lates a UNIX system in Python. Like other 
honeypots, Cowrie will record or examine 
attacks made against it while deceiving 
the attacker into thinking they are inside 
a server. By doing this, the honeypot 
administrator can have a better under-
standing of the kind of assaults perfor-
med, their overall success or failure rate, 
and the location of the IP from which 
each attack originates. In addition, Cowrie 
can search for SSH fingerprints that have 
been unintentionally disclosed, not just 
gather information about the attacker’s 
metadata.

https://github.com/telekom-security/tpotce

https://github.com/cowrie/cowrie

https://cowrie.readthedocs.io/en/latest/



Malware Lab Analysis Report | 09

When it is used in the shell mode, Cowrie shows the following features:

• It simulates a filesystem with the ability to add/remove files.
• It provides the possibility of adding fake file contents so the attacker can cat
   files for example /etc/passwd. Only minimal file contents are included.
• It saves files downloaded with wget/curl or uploaded with SFTP and SCP for
   later inspection.

When it is used in the proxy mode, Cowrie shows the following features:

• It runs as a pure Telnet and SSH proxy with monitoring.
• It manages a pool of QEMU emulated servers to provide the systems to login to.

In contrast to the emulated shell often 
supplied by Cowrie, a fully functional 
environment can be provided via the SSH 
and Telnet proxies. Cowrie turns into a 
high-interaction honeypot with a true 
backend environment where attackers 
can execute any Unix command. The 
backend can be simple (i.e., a real machi-
ne or virtual machines provided by us) or 

it is possible to use Cowrie's backend 
pool. The latter offers a collection of 
virtual machines, manages their startup 
and clean-up, and makes sure that con-
nections from various attackers (different 
IPs) each see a "fresh" environment while 
connections from the same IP get the 
same virtual machine.



Malware Lab Analysis Report | 10

4
Analysis



Malware Lab Analysis Report | 11

4. Analysis

The analysis didn’t reveal any spreading 
technique since the attackers leverage a 
simple brute forcing by using weak user-
name and passwords pairs.
Figure 2 shows an example of the kind of 
credentials that are being used.

According to our logs the attack started 
on February 16th and was still ongoing 
on the 22nd when we started assessing 
the situation, over the span of 6 days we 
counted over 3000 login attempts from 4 
different IP addresses.

Figure 2. Example of credentials used for the attack



Malware Lab Analysis Report | 12

Since the target machine was a 
honeypot, several login attempts were 
successful and they all execute the same 
set of commands, so we suspected that 
these attacks are the work of a single 
threat actor.

Figure 3 shows one of the successful 
attempts which we analysed in this 
report, here the attacker was able to start 
an SSH session with the ability to execute 
arbitrary commands, constrained to the 
emulated environment of the honeypot.

Figure 3. Example of a successful login

Since the SSH session has sufficient privileges to execute commands on the emulated 
system, the attacker starts the infection chain by sending a single bash command line 
composed of multiple commands concatenated with a semicolon.

4.1 Technical analysis and behaviour

The attack is presumably performed by a bot and launches a few commands, as seen in 
figure 3. The command proceeds to download and execute the next stages: the first one 
is a bash script named “miner.sh”, the second one is a Perl script named “div”, both are 
downloaded in “/tmp” directory and deleted once they have been launched so they keep 
running in the background without leaving traces on disk.



Malware Lab Analysis Report | 13

4.1.1  Stage 1 - Monero cryptocurrency miner

The script shown in figure 4 is “miner.sh” and it contains commands to download, 
uncompress and execute the contents of a tgz archive. 
It’s interesting to note that the file is potentially downloaded twice: once with wget and 
a second time with curl, the reason for this is to support embedded devices which may 
not have one of the two, however the initial infection vector delivered over SSH only 
uses wget to deliver the “miner.sh” file, this could indicate that “miner.sh” is being 
reused from other attacks using different vectors.

Figure 4. contents of the miner.sh script

The archive is uncompressed to a folder 
named “.bash”, this is a legitimate-soun-
ding folder name, however it’s not usually 
found on Linux installs.

Once extracted the “.bash” folder con-
tains three files: a bash script named “go” 
and two elf files named “i686” and 
“x86_64”.

At this point the script executes the “go” 
script which pings pool[.]suppor-
txmr[.]com and depending on the 
response flips a variable that is later used 
to launch one of the two executables.

The script proceeds to calculate the rest 
of the command lines for one of the two 
binaries present in the archive, picking 
the appropriate one depending on the 
CPU architecture, finally it creates a cron 
job for persistence and launches the exe-
cutable.

The two binary files are native execu-
tables packed with vanilla UPX*, an 
open-source executable packer, but in 
this case, it is used for obfuscation. Since 
the algorithm hasn’t been modified using 
UPX itself, it is possible to undo the 
packing obtaining a clean executable.

https://upx.github.io/



Malware Lab Analysis Report | 14

Both the “i686” and “x86_64” files have 
been identified as PwnRig*, a miner 
malware family based on the open-sour-
ce legitimate mining software XMRig**.

The way PwnRig operates is sort of a 
frontend for XMRig: it dynamically builds 
a command line by concatenating obfu-
scated strings such as the owner’s wallet 
address and information from the 
infected system and then executes the 
XMRig main function, which will operate 
following the command line arguments 
PwnRig laid out.

By dumping the process memory, we 
intercepted the final command line to 
inspect the parameters: the malware 
mines Monero cryptocurrency and joins 
one of two mining pools depending on 

Unlike other cryptocurrencies, Monero makes it not possible to track transactions made 
by a specific wallet so our OSINT capability is limited, we couldn’t attribute this payload 
to any specific threat actor.

the command line arguments calculated 
by the “go” script, it’s either pool[.] 
blackcat[.]pm or 178[.]62[.]225[.]127.

The destination wallet, used as login 
parameter, is available in the IoC table at 
the end of the report while the password 
is set to a dynamically generated string 
containing information of the infected 
machine such as the local IP address, the 
hostname, number of cores and proces-
sor name.
The miner communicates with the pool 
over plain HTTP using the STRATUM pro-
tocol*** which is documented over the 
XMRig repository. Since the communica-
tion is not encrypted, it’s also possible to 
recover the configuration by intercepting 
the login packet sent to the server as 
seen in figure 5.

Figure 5. The login packet that is sent to the mining pool

https://www.joesandbox.com/analysis/809414/0/html
https://xmrig.com/
https://github.com/xmrig/xmrig-proxy/blob/master/doc/STRATUM.md



Malware Lab Analysis Report | 15

As said earlier, the second stage of the 
attack is a Perl script named “div”. Since 
Perl is an interpreted programming lan-
guage, the file is a plaintext readable 
script, by cross-referencing its content 
with OSINT sources we found out it’s a 
slightly modified version of a script 
named “DDoS Perl IrcBot v1.0”* that can 
be easily found on GitHub.

This script is a bot that connects to an IRC 
server, technically a C2, and accepts com-
mands only from the admins with nick-
names “oper” and “craig”, turning the ma-
chine into a zombie of a botnet.

IRC stands for Internet Relay Chat, it’s a 
well-known protocol used for immediate 
messaging over the internet. While still 
used today, it has mostly fallen to a niche 
protocol given the dominance of social 
media.

IRC typically uses port 6667 to communi-
cate however as seen in figure 6 this 
sample attempts to connect to port 443: 
this is an attempt to bypass firewalls as 
the connection is then used for plaintext 
IRC with no HTTPS encryption.

4.1.2  Stage 2 - DDoS Botnet

Figure 6. Command & Control connection

https://gist.github.com/Cherishao/6186b7e38d9c1df861e2dd1fee8b39f9



Malware Lab Analysis Report | 16

Then the script proceeds to fake its process name shown when ps is executed, in Perl 
this is done by assigning to the $0 variable which normally contains the executable 
name from the OS-allocated command line buffer, a random process name is chosen 
from the ones in figure 7.

Figure 7. List of possible process names used to hide the botnet

Figure 8. Ignoring interruption signals

The script will also configure signal handlers to ignore most signals sent from the OS. In 
Linux signals are used for process communication such as notifying when the user pres-
sed CTRL+C in the terminal, this way the scripts prevent being terminated from user 
input in the console.



Malware Lab Analysis Report | 17

Over the course of a several days we did not observe any commands being sent by the 
botnet C2.

To guard the script from multiple concur-
rent executions it uses a pid file, however, 
this line is not part of the original code on 
GitHub and has been added by the 
attackers. It uses a variable called “pidfi-
le” that is never defined, that makes the 
check useless. Furthermore, the script 
attempts to gain persistence by overwri-
ting the current user’s crontab but this is 
yet another inconsistency since the initial 
infection vector already deleted the file 
from the disk.

At this point the execution proceeds nor-
mally: it will ping the C2 server every two 

minutes by sending “PING” commands; in 
the meantime, it attempts to enter an IRC 
channel named “#div2” but this seems to 
always fail with an “username already in 
use” error which prompts the script to 
continuously retry, this behaviour can be 
seen in figure 9.

Since the username is picked at random 
from a hardcoded list it’s unclear if this is 
yet another obfuscation tactic where the 
server will accept the connection only 
when there’s a command to execute or 
the botnet is at its full capacity.

Figure 9. Continuous “NICK” requests sent by the script



Malware Lab Analysis Report | 18

4.2 IOC

During the investigation and the analysis of the attack we gathered some IoC:

Type Value Note

SHA-256 b2d468e77e99703a9f560abde4d30e9e-
da62cd97159e60acb75711d45e6f18fd

SHA-256 1d6e7a6ce598952c17196-
dcac527f3517a087d0c1578393fe185912a3402baad

SHA-256 4495b55b4f0634def0c91b044b178f5404c8b18ef-
fd871d0a06634d15830fe0e

SHA-256 d8c8eaf6eb2313e6921b375fc3099456d1c6b7b656f
181c359541628c37bbca7

49iZPmCnXje1P7PWwUcCQBdieCzpEYEvr21xGSK4Ea733Qh7RUKsL-
rMMJFaVXupP3fCwHBjfdyjkzfA1gGuGL5XuAnBy436

IP

IP

IP

IP

Domain

Domain

IP

IP

39[.]105[.]35[.]16

50[.]226[.]218[.]158

169[.]60[.]39[.]46

18[.]139[.]151[.]193

pool[.]blackcat[.]pm

pool[.]supportxmr[.]com

178[.]62[.]225[.]127

159[.]223[.]39[.]223

IP 58[.]135[.]80[.]99

Wallet

Table 1. Indicators of compromise

https://www.virustotal.com/gui/file/b2d468e77e99703a9f560abde4d30e9eda62cd97159e60acb75711d45e6f18fd

https://www.virustotal.com/gui/file/1d6e7a6ce598952c17196dcac527f3517a087d0c1578393fe185912a3402baad

https://www.virustotal.com/gui/file/4495b55b4f0634def0c91b044b178f5404c8b18effd871d0a06634d15830fe0e

https://www.virustotal.com/gui/file/d8c8eaf6eb2313e6921b375fc3099456d1c6b7b656f181c359541628c37bbca7/detection

https://www.virustotal.com/gui/ip-address/39.105.35.16

https://otx.alienvault.com/indicator/ip/39.105.35.16

https://www.virustotal.com/gui/ip-address/50.226.218.158

https://otx.alienvault.com/indicator/ip/50.226.218.158

https://www.virustotal.com/gui/ip-address/169.60.39.46

https://otx.alienvault.com/indicator/ip/169.60.39.46

https://www.virustotal.com/gui/ip-address/18.139.151.193

https://otx.alienvault.com/indicator/ip/18.139.151.193

https://www.virustotal.com/gui/domain/pool.blackcat.pm

https://otx.alienvault.com/indicator/domain/pool.blackcat.pm

https://www.virustotal.com/gui/domain/pool.supportxmr.com

https://otx.alienvault.com/indicator/domain/pool.supportxmr.com

https://www.virustotal.com/gui/ip-address/178.62.225.127

https://otx.alienvault.com/indicator/ip/178.62.225.127

https://www.virustotal.com/gui/ip-address/159.223.39.223

https://otx.alienvault.com/indicator/ip/159.223.39.223

https://www.virustotal.com/gui/ip-address/58.135.80.99

https://otx.alienvault.com/indicator/ip/58.135.80.99



Malware Lab Analysis Report | 19

5
Conclusion



Malware Lab Analysis Report | 20

The objective of Brute Force attacks is to 
gain unauthorised access to internet 
facing device. Typically, these are perfor-
med by bots using IP scanning and 
common password dictionaries. In this 
case the intrusion attempts happened on 
the SSH service of a honeypot which is 
monitored and connected to an isolated 
network. This configuration allowed us to 
analyse a real-case scenario without suf-
fering any damage.

The most common way to prevent Brute 
Force attacks to SSH servers is for the 
administrator to disable password 
access, enabling SSH Public/Private Key 
Authentication. The private key is stored 
in the local machine, remaining with the 
user as a proof of his identity, while the

public key is stored in the server. Only the 
user in possession of the private key that 
corresponds to the public key will be able 
to authenticate successfully.
Furthermore, the administrator could 
improve the security introducing dynamic 
IP restrictions, making it so that a single 
IP address cannot attempts to login mul-
tiple times. A viable choice could be the 
installation of the tool fail2ban*, an intru-
sion prevention framework written in 
Python. It provides protection against 
Brute Force attacks on the server, 
allowing to block IP addresses after a few 
failed login attempts.
Prevention rules are the best defensive 
strategy to avoid unwanted intrusions.

5. Conclusion

https://www.fail2ban.org/wiki/index.php/Main_Page



Defence Tech Holding S.p.A Società Benefit
Via Giacomo Peroni, 452 - 00131 Roma

tel. 06.45752720 - fax 06.45752721
info@defencetech.it - www.defencetech.it


