
GuLoader deploys Remcos
Malware Lab Analysis Report

(part 1)

Malware Lab Analysis Report | 02

Summary

4. Conclusions

3. Analysis

2. Executive Summary

1. Our Malware Lab

3.3 IOC

3.2 Overview of GuLoader

3.1 NSIS Script Analysis

19

07

05

03

09

11

18

This document is protected by copyright laws and contains material proprietary to the Defence Tech Holding S.p.A Società Benefit.
It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in
any manner without the express prior written permission of Defence Tech Holding S.p.A Società Benefit. The receipt or possession
of this document does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything
that it may describe, in whole or in part.

Malware Lab Analysis Report | 03

1
Our Malware Lab

Malware Lab Analysis Report | 04

Defence Tech Malware Lab daily perfor-
ms dissection of malware with the aim of
timely understanding the technological
evolutions of attacks, consolidating the
knowledge of necessary to make more
effective and faster the process of inci-
dents responding, contributing to sprea-
ding information about emerging threats
into the expert’s community and among
its clients.

Malware Lab analysts are continuously
engaged in searching and experimenting
new analysis tools, for increasing accu-
racy and scope of action with regard to

the proliferation of new evasion and
anti-analysis techniques adopted by
malwares.

The Malware Lab is also committed to
the development of proprietary tools for
malware analysis and supporting the
management and response of incidents.

Besides malware analysis, Malware Lab
ideated and implemented an automatic
process of extraction of Indicators of Com-
promise (IOC) that is daily run on dozens
of new malwares, intercepted in the wide
for populating our Knowledge Base.

1. Our Malware Lab

CORRADO AARON VISAGGIO
Group Chief Scientist Officer & Malware Lab Director
a.visaggio@defencetech.it

Malware Lab Analysis Report | 05

2
Executive Summary

Malware Lab Analysis Report | 06

2. Executive Summary

Since the beginning of the 2023, mali-
cious campaigns involving GuLoader
(alias CloudEyE) have been reported in
Italy¹ ².

GuLoader is a sophisticated shellcode-
based downloader that typically plays a
crucial role in downloading and distribu-
ting a wide variety of trojans and stealers
as encrypted payloads. It acts as the first
stage of a more complicated attack per-
formed by the payload it carries. The key
feature of GuLoader lies in its ability to
evade the detection of traditional
anti-malware solutions through advan-
ced packing and encryption techniques.
As if it’s not enough, GuLoader is conti-
nuously updated with new advanced
anti-debugging techniques, anti-analysis
mechanisms and sandbox detection,
which makes the process of reverse engi-
neering significantly challenging for the
analysts. Therefore, even commercial
sandboxes sometimes are not always
able to detect it³.

Earlier this year, GuLoader has been
observed deploying malware such as
Remcos⁴ spread with Phishing e-mails.
The distribution is performed by tricking
users into opening an attached PDF file
that will redirect them to a cloud pla-
tform, where a ZIP file containing the ma-
licious executable is available for downlo-
ad. It is worth noticing that these malwa-
re distribution campaigns follow a consi-
stent modus-operandi, so we will not go
into specific details here.

Our analysis will cover the initial stage of
the sample we intercepted, consisting in
an NSIS installer package and an over-
view of the less-known GuLoader capabi-
lities, while the features of Remcos, that
is the payload distributed by this specific
GuLoader sample, will be described in the
second part of the report.

¹
²
³
⁴

https://www.securityopenlab.it/news/2721/malware-in-italia-occhio-alla-nuova-versione-di-guloader.html
https://www.difesaesicurezza.com/cyber/cybercrime-massiccia-campagna-guloader-anche-in-italia/
https://app.any.run/tasks/c5192bf6-a86e-406a-a80e-734f29330019/
https://www.cyfirma.com/outofband/guloader-deploying-remcos-rat/

Malware Lab Analysis Report | 07

3
Analysis

Malware Lab Analysis Report | 08

⁵ https://nsis.sourceforge.io/Main_Page
⁶ https://nsis.sourceforge.io/Can_I_decompile_an_existing_installer

Figure 1. NSIS installer extraction

3. Analysis

The sample we analysed is an installer
created using Nullsoft Scriptable Install
System⁵ (NSIS). NSIS is a widely used
open-source script-based tool to build
Windows installers which is able to
handle complex installation tasks.

Launching the executable shows a typical
installer window for a few seconds which
executes the “installation” process
without any other confirmation from the
user, closing itself once the process com-
pletes. Actually, the installer copies some
decoy files and the malware onto the
disk, then executes it in the background.

As the first static analysis step, we tried
to extract the content from the installer
using many archive manager tools.
Among the various files, we observed the
presence of a suspicious binary file,
named “Fiskeredskabernes.Rad”.
Inspecting the content of the file led us to
believe that it’s likely encrypted, indica-
ting that it may contain executable code
as part of the infection chain.

To properly understand the use of this file
we must disassemble the installer
package to obtain the original NSIS script,

however most extraction tools we used
either did not offer this feature or it
wasn’t working properly.

There are various tools capable of
decompiling NSIS scripts⁶, we opted for
using 7-zip 15.06. Note that this is an old
version of 7-zip as modern releases for
some reason removed the NSIS
disassembler feature. Since this version
is outdated and potentially vulnerable,
we took precautions by conducting the
extraction process within a Virtual
Machine environment.

Malware Lab Analysis Report | 09

3.1 NSIS Script Analysis

The installation process appears normal as all the extracted files from the installer
archive are dumped onto the disk. However, the install script does indeed check for the
existence of “Fiskeredskabernes.Rad”, as seen in Figure 2.

We have successfully obtained the necessary NSI script which will be used during the
installation process and that we are going to analyse in the next section.

Figure 2. Check existence of the file

Figure 3. Invoking the function named “Call” from System.dll

The install script contains many obfusca-
ted functions and a pervasive control flow
obfuscation, since this is a rather uncom-
mon language there are not many tools
to help understand it. We observed that
the code relies one critical “System::Call”
function which allows the NSIS script to
interact with outside functions.

As seen in figure 3, the Call function takes
a single string argument which the runti-
me will deserialize and use to execute the
instruction, since the script is obfuscated
it’s impossible to statically recover the
arguments it receives throughout the
execution.

Malware Lab Analysis Report | 10

Figure 4. Suspicious imports of System.dll from pestudio

Figure 5. Source code of the “Call” function

After some research, we found out that System:Call refers to the “Call” function of
System.dll, a legitimate component of NSIS.

Moreover, analysing System.dll with the Pestudio⁷ tool reveals the use of LoadLibrary,
which further indicates the dynamic behaviour of System.dll and likely its Call function.

At this point we decided the best way forward would be dynamic analysis by hooking
functions in System.dll. Our target is the “Call” function, we could easily find it in the
disassembled binary by using the NSIS project GitHub mirror⁸ as a reference.

⁷ https://www.winitor.com/
⁸ https://github.com/kichik/nsis/blob/c177f44ce2089f5aa5d1a0f49a6c02c487e33c1f/Contrib/System/
Source/System.c#L373

Malware Lab Analysis Report | 11

From the source in figure 5 we can see that both the target DLL and function names are
stored in the SystemProc structure, by setting a breakpoint on this function we can inter-
cept the call names. Using this technique, we observed the install script perform the
following sequence of native Win32 API calls:

1. kernel32::CreateFileA: This is used to open the .rad file
2. kernel32::VirtualAlloc: This is used to allocate a memory buffer with Read,
 Write and Execute permissions
3. kernel32::ReadFile: This is used to read the content of the .rad file to the just
 allocated buffer
4. kernel32::EnumResourceTypesA⁹: This is an enumeration function that iterates over

the executable resources and calls a function via pointer for each; in practice it’s
used as an obfuscation trick to dynamically invoke the just extracted code without
using suspicious functions or assembly routines.

Figure 6. Blocks linked by unconditional jumps

3.2 Overview of GuLoader

At this point the dynamically loaded
payload takes control, and the first stage
of the shellcode is the unpacking process.
It consists in an unpacker that will
decrypt and execute the next stage.

The interesting thing about this unpacker
is its control flow obfuscation: the whole
code is composed by small blocks linked
with unconditional jumps (see figure 6);
this is a common pattern used to confuse
the disassembler. To overcome this chal-
lenge, we used IDA Pro’s tracing featu-
res¹⁰ which executes the program while
producing a detailed trace of the execu-
tion, in a way similar to emulators.

⁹ https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-enumresourcetypesa
¹⁰ https://hex-rays.com/wp-content/uploads/2019/12/tracing.pdf

Malware Lab Analysis Report | 12

Then, we could simply identify the entry
point for the next stage by searching the
logs for the part where the control flow
leaves the packer code region. As a result,
we effectively bypassed the packer.

Once the packer is defeated, we were
able to extract the resulting shellcode as
a standalone EXE file in order to statically
analyse it.

Then, we faced the real code of GuLoader
and the first step of its execution is dyna-
mically importing system functions

through a technique called PEB (Process
Environment Block) walking. PEB Walking
consists in manually parsing the Win-
dows dynamic loader data structures
which can be found from the PEB to find
pointers to loaded libraries and their
respective functions, as shown in figure
7. The PEB data structure is not comple-
tely documented, and programs are not
supposed to access such implementation
details, however this doesn’t stop
malware developers from using them to
evade static and dynamic analysis.

Figure 7. PEB walking

Malware Lab Analysis Report | 13

¹¹ https://www.x86matthew.com/view_post?id=windows_no_exec

Once the malware identifies all the
necessary dynamic functions, it proceeds
to set up an exception handler using the
“RtlAddVectoredExceptionHandler” ¹¹ fun-
ction from ntdll. The handler will be used
as an anti-debugging technique and as a
means to obfuscate the control flow. In
fact, from this point on, the malware’s
code contains several special instruction
patterns such as int3, which causes an
exception and triggers the custom excep-
tion handler.

The real execution flow is restored by the
exception handler, seen in figure 8, which
would read a byte following the
instruction where the exception occurred,
then would perform a xor operation with
a constant value and use the result to
determine the number of bytes to skip in
order to resume the program’s real exe-
cution flow.

Figure 8. Pattern which causes the exception

Malware Lab Analysis Report | 14

There are several instruction sequences
that can trigger this exception-based
obfuscation and they’re handled with
some slight differences. Other than the
int3 instruction, we also observed the
“pushf”, “or”, “popf” and “mov” sequence
wherein the first three instructions
enable the hardware single step flags
causing an exception at the fourth
instruction, jumping to the exception
handler. Another recurring pattern invol-
ves a series of “mov”, “xor” and “add”
instructions executed on a single register,
followed by a “mov” instruction which
dereferences that register. This causes a
segmentation fault exception, indicating
that an invalid memory address was

accessed. However, when this address
falls within a specific range, the exception
handler recognises it as one of the pre-
viously discussed cases.

To defeat this technique, we wrote a
script that matches these patterns and
corrects the control flow by replacing the
offending instructions with an uncondi-
tional branch to the target, this also
allows IDA to properly detect function
boundaries and decompile them.

One more interesting thing to note about
the exception handler is its anti-debug-
ging implementation, shown in figure 9.

Figure 9. Checking Debug Registers to verify the presence of hardware breakpoints

When an exception occurs in a program, the operating system calls the exception hand-
ler passing it the CPU context.
The CPU context is a data structure which represents a snapshot of the processor’s
state at the time of the exception containing information such as the value of all regi-
sters and information about what caused the exception.

Malware Lab Analysis Report | 15

The exception handler is supposed to
analyse the context struct and decide if
the exception is recoverable, and if that’s
the case manually fix the context before
returning to the OS, or terminate the pro-
gram (in practice, before the program is
terminated, the exception will travel
“upwards” to pass through all the regi-
stered handlers in case this specific
exception must be handled by a piece of
code higher on the call stack.)

But in the case of GuLoader, the malicious
exception handler abuses the informa-
tion in the CPU Context to access the
Debug Registers, which represent har-
dware breakpoints; if any of them is set, it
means that there is a debugger attached.
In this case GuLoader does not handle the

exception, causing the process to crash.

At this point the main GuLoader will per-
form several anti-analysis checks ranging
from simple process detection, by sear-
ching for well-known virtual machine
guest tools process names, to unhooking
low level ntdll.dll functions.

Once all the anti-analysis checks are suc-
cessful, GuLoader will attempt to migrate
into a different process through code
injection. In this case, it creates a suspen-
ded “CasPol.exe” process by passing the
“CREATE_SUSPENDED” flag¹², using Cre-
ateProcessInternalW API¹³. CasPol is a
tool part of the .NET Framework and typi-
cally present in the following system
directories:

• %Windows Directory%\Microsoft.NET\Framework\<version on 32-bit systems>
• %Windows Directory%\Microsoft.NET\Framework64\<version on 64-bit systems>

¹² https://learn.microsoft.com/en-us/windows/win32/procthread/process-creation-flags
¹³ https://medium.com/@Achilles8284/the-birth-of-a-process-part-2-97c6fb9c42a2

Malware Lab Analysis Report | 16

GuLoader attempts to inject itself to this
new process through process hollowing,
in particular, instead of hollowing the
main executable of the process it will try
to replace the content of one of its libra-
ries and if this process fails it resorts to
simply allocating executable memory as
a fallback.

The new process is tasked to download
the payload from the C2 server; the
payload is encrypted, and the encryption

scheme has already been analysed in
depth by McAfee¹⁴.

In this case the C2 server is “wearethe-
standard[.]com[.]au/mt/iaJrXrOivtG81.bin”
and the downloaded payload is a sample
of the RemCos malware family.

Based on the observed behaviour in
figure 10, the GuLoader payload drops
and launches two more executable files:
F777.exe and serv2.exe

¹⁴ https://www.mcafee.com/blogs/other-blogs/mcafee-labs/guloader-campaigns-a-deep-dive-analysis-of-
a-highly-evasive-shellcode-based-loader/
¹⁵ https://www.4dots-software.com/convert-excel-to-exe/
¹⁶ https://www.4dots-software.com/exe-slideshow-maker/

Figure 10. Process tree in Hatching Triage Sandbox

The first file, F777.exe is a .NET executable and can be quickly identified by its metadata:
it’s a file produced by a legitimate 4dots¹⁵ ¹⁶ tool suite to convert Microsoft Excel files to
standalone executables and to create slideshow from photos as a standalone exe. This
file plays no role in the infection chain but is only used to show a document to the user
as a cover, so they don’t realize they have been infected.

Malware Lab Analysis Report | 17

On the other hand, serv2.exe is the actual Remcos sample, the executable does not
appear to be packed as self-identifying strings can be immediately detected as observed
in figure 12. It will be the focus of the second part of the report.

Figure 11. Source code of F777.exe

Figure 12. Code snippet of the Main function

Malware Lab Analysis Report | 18

3.3 IOC

Table 1. Indicators of compromise

In the next table we inserted IoC of the GuLoader sample analysed in this report.

Note: detection rates are as of time of writing, given the low rates they are likely to increase over the course
of the following days as AV vendors update their products.

Type Value Note

SHA-256 0d771bed67134df3cfcbafe953d9378ca9a40ba93f05f726b9286638a08318e4

SHA-256 2da6c07bdd6d897ac282e773149df7e0118c00257532dc598c40a28a36e49bce

SHA-256 b917583a1bd2371f4c1916cf0a4831e4d26a1d2fc7103005900d4cb775e73359

Domain wearethestandard[.]com[.]au

SHA-256 1b7edf5ca77dd80a55cec04c89faa7c5fbc7a0352083547ba990514d6eef4ba1

SHA-256 b735367eeba455050c2bfb7c3100b5d1b3c742b1aa1d32d12ad9bc5a6f44f045

https://www.virustotal.com/gui/domain/wearethestandard.com.au

https://otx.alienvault.com/indicator/domain/wearethestandard.com.au

https://www.virustotal.com/gui/file/b917583a1bd2371f4c1916cf0a4831e4d26a1d2fc7103005900d4cb775e73359/community

https://www.virustotal.com/gui/file/2da6c07bdd6d897ac282e773149df7e0118c00257532dc598c40a28a36e49bce

https://www.virustotal.com/gui/file/1b7edf5ca77dd80a55cec04c89faa7c5fbc7a0352083547ba990514d6eef4ba1

https://www.virustotal.com/gui/file/b735367eeba455050c2bfb7c3100b5d1b3c742b1aa1d32d12ad9bc5a6f44f045

https://www.virustotal.com/gui/file/0d771bed67134df3cfcbafe953d9378ca9a40ba93f05f726b9286638a08318e4/detection/f-0d771bed67134df3cfcbafe953d9378ca9a40ba93f05f726b9286638a08318e4-1687435220

Malware Lab Analysis Report | 19

4
Conclusions

Malware Lab Analysis Report | 20

4. Conclusions

GuLoader is a sophisticated malware
loader that employs multiple evasion and
obfuscation techniques to deliver its
payload. GuLoader has been observed to
deploy a wide variety of stealers and
remote access tools, including Remcos,
which will be the focus in the second part
of this report.

As this report has shown, GuLoader uses
advanced anti-debugging and anti-a-
nalysis methods exploiting exception
handlers to obfuscate the code control
flow, in order to complicate the reverse
engineering process.

Furthermore, GuLoader can detect isola-
ted environments such as Virtual Machi-
nes or sandboxes, used by security rese-
archers and analysts for testing and
analyses. This environment awareness
allows the malware to remain unde-
tected and evade detection systems.
Commercial sandboxes must continuou-
sly update their detection capabilities to
keep up with GuLoader’s evolving tactics.

To strengthen an organization’s security
posture against the distribution of these

downloaders, we recommend a mul-
ti-layered approach that starts with the
training of the employees on cybersecu-
rity best practices and emerging malware
trends. In addition to training, critical me-
asures include the deployments of
anti-malware solutions, robust e-mail
filtering, behaviour-based detection me-
chanism and advanced threat detection
solutions.

Moreover, to restrict lateral movements
and to prevent the spread of infections,
it’s highly recommended to also imple-
ment network segmentation. By seg-
menting the network, an additional layer
of defence is established, limiting the
impact of potential infections, and isola-
ting malicious activities.

Finally, it’s important to continuously
monitor network traffic on all the
endpoints to intercept the communica-
tion with the malicious C2 servers.

By combining these layers of security,
organizations can significantly reduce the
malware attack surface and the risk of
malware infiltrations.

Defence Tech Holding S.p.A Società Benefit
Via Giacomo Peroni, 452 - 00131 Roma

tel. 06.45752720 - fax 06.45752721
info@defencetech.it - www.defencetech.it

