
Stealc
Malware Analysis Report

Malware Lab Analysis Report | 02

Summary

5. Conclusions

3. Analysis

2. Executive Summary

1. Our Malware Lab

3.3 IOC

3.2 Technical analysis and behaviour

3.1.2 Anti-debugging techniques

3.1.1 Encrypted code loaded into memory

3.1 Anti-analysis techniques

21

08

05

03

20

12

11

3.1.3 Imports protection 11

3.1.4 Anti-patching technique 11

10

10

This document is protected by copyright laws and contains material proprietary to the Defence Tech Holding S.p.A Società Benefit.
It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in
any manner without the express prior written permission of Defence Tech Holding S.p.A Società Benefit. The receipt or possession
of this document does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything
that it may describe, in whole or in part.

Malware Lab Analysis Report | 03

1
Our Malware Lab

Malware Lab Analysis Report | 04

Defence Tech Malware Lab daily perfor-
ms dissection of malware with the aim of
timely understanding the technological
evolutions of attacks, consolidating the
knowledge of necessary to make more
effective and faster the process of inci-
dents responding, contributing to sprea-
ding information about emerging threats
into the expert’s community and among
its clients.

Malware Lab analysts are continuously
engaged in searching and experimenting
new analysis tools, for increasing accu-
racy and scope of action with regard to

the proliferation of new evasion and
anti-analysis techniques adopted by
malwares.

The Malware Lab is also committed to
the development of proprietary tools for
malware analysis and supporting the
management and response of incidents.

Besides malware analysis, Malware Lab
ideated and implemented an automatic
process of extraction of Indicators of Com-
promise (IOC) that is daily run on dozens
of new malwares, intercepted in the wide
for populating our Knowledge Base.

1. Our Malware Lab

CORRADO AARON VISAGGIO
Group Chief Scientist Officer & Malware Lab Director
a.visaggio@defencetech.it

Malware Lab Analysis Report | 05

2
Executive Summary

Malware Lab Analysis Report | 06

2. Executive Summary

Figure 1. Event count related to Stealc from Recorded Future threat intelligence platform

On January 10, 2023, “plymouth”, a
member of the underground Rus-
sian-speaking forums XSS and BHF, star-
ted advertising a new non-resident stea-
ler that features a flexible data collection
configuration and a user-friendly admin
panel called “stealc”.

According to the seller, the development
of Stealc is inspired by popular info-stea-
lers in the underground market, including
Vidar, Raccoon, Mars and RedLine. In
figure 1, Recorded Future* threat intelli-
gence platform reveals an increasing
diffusion of this malware family.

We decided to analyse a recent sample of this malware, which we downloaded from
MalwareBazaar**. This malware has recently been published and analysed*** ****, con-
sequently there are not many samples of this family. The developers are still updating it
rapidly according to intelligence sources as Recorded Future.

https://www.recordedfuture.com/

https://bazaar.abuse.ch/browse/signature/Stealc/

https://blog.sekoia.io/stealc-a-copycat-of-vidar-and-raccoon-infostealers-gaining-in-popularity-part-1/

https://blog.sekoia.io/stealc-a-copycat-of-vidar-and-raccoon-infostealers-gaining-in-popularity-part-2/

Malware Lab Analysis Report | 07

This is a stealer distributed as Malwa-
re-as-a-Service (MaaS), developed enti-
rely in C, and described as lightweight
(~78 kb), which implements code obfu-
scation, sensible data and credentials
collection, sending all the gathered infor-
mation to the Command & Control.
The version analysed in this report seems

to be the latest available at the time of
writing. This is suggested by the version
stored in the metadata of the executable,
however since its content is attacker con-
trolled, we also matched the results of
our analysis with the advertised features
of the latest version of the malware in
figure 2.

During the analysis we noted that the
sample was packed by a compressor
utility which obfuscates the code making
reverse engineering quite difficult. Unfor-
tunately, it uses a legitimate commercial
tool, since we could not find any automa-
tic unpacking tool, we are not going to

divulge or describe with details the tech-
niques used to unpack it. The focus of this
report will be on the general behaviour of
this malware family and a few differen-
ces which we observed in this sample
that were not documented from older
samples.

Figure 2. Translated forum post from the seller

Figure 3. Screenshot of the feature announced on the post of the latest version

This matches what we found in the disassembly where the sample writes the running
path in the “System_info.txt” as in figure 3.

Malware Lab Analysis Report | 08

3
Analysis

Malware Lab Analysis Report | 09

3. Analysis

The analysed file is sensibly bigger than it
was described by previous analyses*:
12,3 MB. This size is caused by the packer
used to obfuscate the sample; indeed,
when opened on IDA**, a tool used to

debug and to perform reverse enginee-
ring by malware analysts, the sample has
an obfuscated Main function as seen in
figure 4, so we needed to unpack it to
observe its behaviour.

Figure 4. Main function of the packed sample

The packer used by the developers is a legitimate commercial tool, unfortunately it is
also commonly abused by threat actors to protect malicious code.

https://blog.sekoia.io/stealc-a-copycat-of-vidar-and-raccoon-infostealers-gaining-in-popularity-part-1/#h-malware-sample-association

https://hex-rays.com/ida-pro/

Malware Lab Analysis Report | 10

Given the commercial nature of the packer we will not divulge the exact unpacking
method, but we will summarise some of the anti-analysis techniques it uses.

3.1 Anti-analysis techniques

The PE file contains several sections
whose names are gibberish, without the
usual section names as .text or .data.
Four of these sections are empty and
initialised with zeros when loaded, the
others contain the code and data.

The packer extracts the original PE
sections to its own empty sections, this is

not a common behaviour since simpler
packers usually just extract the original
PE file in memory.

The file starts executing in the decryption
stub which loads the malicious part of the
binary into memory, since the memory
permission are already set in the section
headers no VirtualProtect* calls are needed.

3.1.1 Encrypted code loaded into memory

Figure 5. Section headers and their permissions

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect

Malware Lab Analysis Report | 11

3.1.2 Anti-debugging techniques

Debugging is crucial for understanding obfuscated code; this sample uses several tech-
niques to detect when the process is started by the debugger or if the debugger atta-
ches after the process has started. In both cases the process terminates with an error
message claiming that the application cannot be debugged. Popular open-source
anti-debug bypasses such as ScyllaHide* do not work out of the box.

3.1.3 Imports protection

The IAT (Import Address Table) of the unpacked file has been removed and the packer
replaced all external invocations with calls to stubs in the packer code, these stubs are
obfuscated procedures that dynamically calculate the actual address of the original fun-
ction. Therefore, without the code of the packer the sample cannot be executed, this
makes unpacking it to produce a clean PE file impossible.

3.1.4 Anti-patching technique

We also observed an anti-patching technique, which detects changes both in the packer
code and the unpacked code. If tampering is detected, the process will terminate with an
error message. This is a further anti-debug technique since adding software breakpoints
to the process in memory also counts as a type of patching.

https://github.com/x64dbg/ScyllaHide

Malware Lab Analysis Report | 12

After unpacking and finding the entry point of the malicious code, we could start to
reverse engineer it. The following picture shows the main function of the sample with all
the sub-procedures appropriately named.

Now the code looks more readable, so that we could analyse the important functions
and the behaviour of the malware (see figure 6).

3.2 Technical analysis and behaviour

Figure 6. Main function of unpacked and reversed sample

Malware Lab Analysis Report | 13

All the strings are encrypted with the RC4
algorithm and encoded as Base64. RC4 is
a common stream cipher which is very
easy to implement; it encrypts one byte at
a time, although still effective, it is now
considered obsolete given the existence
of more modern and robust algorithm
such as AES encryption algorithms family.

This sample implements strings decryp-
tion, using the hardcoded key, by calling a
specific function once for each encrypted
string, and then storing the result in a
global variable. This behaviour can be
seen in figure 7.

Once the strings have been decrypted, the sample begins to resolve the Windows APIs
it needs and similarly to strings, stores them in global variables (see figure 8).

This is a common pattern in malicious code, however as stated before, this sample was
protected with a packer which includes import protection techniques; by manually resol-
ving the APIs, Stealc effectively nullifies the protection.

Figure 7. Decrypting every string

Malware Lab Analysis Report | 14

The sample includes a check to ensure
that it is not running multiple times con-
currently; this is done by creating a
named event called “HAL9TH_<computer
name>_<username>”, if this event alrea-
dy exists the malware checks every six

seconds waiting for it to be deleted. If this
event does not exist, the malware logic
continues by creating it.
The relevant APIs used for this process
are OpenEventA()* and CreateEventA()**,
as seen in figure 9.

Figure 8. Resolving the imports

Figure 9. Method to stop multi-execution

https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-createeventa

https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-openeventa

Malware Lab Analysis Report | 15

integer values, this are documented in
the Windows Language Code Identifier
document**.

The languages that are whitelisted are:
Russian, Ukrainian, Belarusian, Uzbek
and Kazakh. As already said, if the system
is set to one of these languages, then the
process will be stopped.

Deriving the list of the languages is not
immediate because either due to compi-
ler optimizations or deliberate obfusca-
tion, the current language is checked
through several mathematical opera-
tions, this means that the exact values
representing the various languages do
not appear in the code. The behaviour
could be seen in figure 10.

Interestingly there is a bug in this approa-
ch, that is, the two calls to OpenEventA()
and CreateEventA() are not atomic. This
leads to a race condition where the
malware could execute multiple times
concurrently, in case the two instances
call CreateEventA() at the same time. The
correct approach would be to just call
CreateEventA() and check for the result
code “ERROR_ALREADY_EXISTS”*.

The next step of the execution is to check
two exit conditions: the system language
and the date of the computer.

The system language is retrieved by
using the GetUserDefaultLangID API and
if it matches with a few specific langua-
ges, the process will immediately termi-
nate. The languages are identified by

Figure 10. Check of the languages

https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-LCID/%5bMS-LCID%5d.pdf

https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-createeventa#return-value

Malware Lab Analysis Report | 16

This could be considered an evasion tech-
nique because it limits the time during
which the malware can be detected and
analysed but will also be effective to
defeat sandbox environment if its clock is
not set to the current date. In order to
execute it one could manually change the
date on the machine. It is also possible to
use a debugger to bypass the check.

Something that is not documented in
other reports, is the presence of an expi-
ration date, also called “time bomb”. In
figure 9 the malware checks the system
date and compares it with the time
bomb’s date: the 9th of April. If the
system is set to a later date, the process
will terminate.

Figure 11. Time bomb implementation

Malware Lab Analysis Report | 17

Figure 12. Date time of the time bomb

Figure 13. Communication with C2 intercepted during debugging

Once the time bomb check is passed, the main malware logic execution begins, where it
decrypts additional strings and dynamically resolves more system APIs.

To steal data from certain applications, such as browsers, the malware needs additional
third-party libraries like “SQLite”. These are downloaded directly from the C2 servers.

The hardcoded C2 address is: “65[.]109[.]226[.]91”.

The time bomb date is stored as multiple encrypted strings and it is loaded by the fun-
ction we named “get_date_timebomb()” (function visible in figure 11), then it is parsed
using “sscanf”. In the sample the string is “09/04/2023”, as seen in the next figure.

Malware Lab Analysis Report | 18

This is not the only DLL downloaded from the C2 and used by the malware, when
needed the following DLLs can be downloaded as well:

• freebl3.dll
• mzglue.dll
• msvcp140.dll
• nss3.dll
• softokn3.dll
• vcruntime140.dll

We sniffed the internet traffic performing dynamic analysis, so we were able to intercept
some request from the tool Wireshark* visible in the example in figure 14.

Figure 14. GET request intercepted by Wireshark during dynamic analysis

The communication protocol is not
structured, instead the various pieces of
information are sent each with a unique
request and the protocol is already
well-known**.

As for targeted information, Stealc
always steals browsers data and even
targets specific browser extensions such

The communication with the C&C is crea-
ted building requests through POST and
GET methods.

Data exfiltration happens through HTTP
POST requests to the C2 server; the con-
tent of the request is simply Base64 enco-
ded, there is no encryption involved as it is
usually the case for other info-stealers.

https://blog.sekoia.io/stealc-a-copycat-of-vidar-and-raccoon-infostealers-gaining-in-popularity-part-2/#h-command-and-control-communication

https://www.wireshark.org/

Malware Lab Analysis Report | 19

as crypto wallets and password mana-
gers. Furthermore, it will acquire general
system information and can be configu-
red to steal information from specific
desktop software as well.

In our sample, the list of optional target
software can be seen in figure 15, it inclu-
des commonly used applications like
Telegram, Discord, Steam and Outlook;
the malware also targets other desktop
chatting applications like “pidgin”* and
“tox chat”**. A more exhaustive list of the
targets has already been published***.

Figure 15. Configuration of Stealc

Figure 16. Intercepted data exfiltrated communication

We intercepted the communication containing the data exfiltrated which are Base64
encoded in figure 16.

https://blog.sekoia.io/stealc-a-copycat-of-vidar-and-raccoon-infostealers-gaining-in-popularity-part-1/#h-annex

https://tox.chat/

https://www.pidgin.im/

Malware Lab Analysis Report | 20

Table 1. Indicators of compromise

In the next table we inserted IoC of the analysed sample.

Note: detection rates are as of time of writing, given the low rates they are likely to increase
over the course of the following days as AV vendors update their products.

Since Stealc is a novel threat, we recommend reviewing SEKOIA.IO’s full list of IoC, Yara
rules and Suricata rules, and immediately incorporating them into your security pro-
gram, if you have not done so already.

The following link is a GitHub repository of SEKOIA.IO containing IoC and detection rules:

3.3 IOC

Type Value Note

SHA-256 eb6c798cc9b87f2287e5e-
abc203b5a9d3c8af969f8fc433107a3a129b1df8596

IP 65[.]109[.]226[.]91

https://github.com/SEKOIA-IO/Community/tree/main/IOCs/stealc

https://otx.alienvault.com/indicator/ip/65.109.226.91

https://www.virustotal.com/gui/ip-address/65.109.226.91

https://www.virustotal.com/gui/file/eb6c798cc9b87f2287e5eabc203b5a9d3c8af969f8fc433107a3a129b1df8596

Malware Lab Analysis Report | 21

4
Conclusions

Malware Lab Analysis Report | 22

Info-stealer malware target credentials
stored in browsers from individual com-
puters and the stolen data regularly ends
up on dark web markets, cybercriminals
can then purchase the data, and use it to
gain access to an organization’s network
or systems, so it is critical for organiza-
tions to swiftly detect and mitigate
info-stealer malware.

MaaS platforms like Stealc usually provi-
de threat actors with the tools necessary
to orchestrate, automate and execute

successful malware attacks with minimal
skills. An organization’s first line of
defence to avoid victimization is to
ensure that vulnerable critical systems
and applications are not discoverable via
the internet. Security administrators
should also enforce a robust credential
hygiene program, enforcing MFA (Mul-
ti-Factor Authentication) using authenti-
cation applications like Google or Micro-
soft Authenticator, since attackers rely on
stolen credentials to succeed in their
campaigns.

4. Conclusions

Defence Tech Holding S.p.A Società Benefit
Via Giacomo Peroni, 452 - 00131 Roma

tel. 06.45752720 - fax 06.45752721
info@defencetech.it - www.defencetech.it

