
Weaponised PDF
Malware Analysis Report

Malware Lab Analysis Report | 02

Summary

4. Research on further uses of Pdf
 embedded files

3. Analysis

2. Executive Summary

1. Our Malware Lab

3.1 PDF file (Initial vector) - Technical analysis and behaviour

27

5. Conclusions 31

10

05

03

12

3.2 Excel file (Second stage) - Technical analysis and behaviour 16

3.3 Equation editor exploit shellcode analysis 19

3.4 Formbook - Dynamic analysis 21

3.5 IOC 25

This document is protected by copyright laws and contains material proprietary to the Defence Tech Holding S.p.A Società Benefit.
It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise exploited in
any manner without the express prior written permission of Defence Tech Holding S.p.A Società Benefit. The receipt or possession
of this document does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything
that it may describe, in whole or in part.

Malware Lab Analysis Report | 03

1
Our Malware Lab

Malware Lab Analysis Report | 04

Defence Tech Malware Lab daily perfor-
ms dissection of malware with the aim of
timely understanding the technological
evolutions of attacks, consolidating the
knowledge of necessary to make more
effective and faster the process of inci-
dents responding, contributing to sprea-
ding information about emerging threats
into the expert’s community and among
its clients.

Malware Lab analysts are continuously
engaged in searching and experimenting
new analysis tools, for increasing accu-
racy and scope of action with regard to

the proliferation of new evasion and
anti-analysis techniques adopted by
malwares.

The Malware Lab is also committed to
the development of proprietary tools for
malware analysis and supporting the
management and response of incidents.

Besides malware analysis, Malware Lab
ideated and implemented an automatic
process of extraction of Indicators of Com-
promise (IOC) that is daily run on dozens
of new malwares, intercepted in the wide
for populating our Knowledge Base.

1. Our Malware Lab

CORRADO AARON VISAGGIO
Group Chief Scientist Officer & Malware Lab Director
a.visaggio@defencetech.it

Malware Lab Analysis Report | 05

2
Executive Summary

Malware Lab Analysis Report | 06

2. Executive Summary

A lesser-known feature of PDF files is
that they can include attachments, which
are embedded files the user can open
with a click. While this feature supports
documents or multimedia components it
can also be abused by threat actors to
distribute malware.

The risk posed by such vector is mitigated
in most PDF readers, for instance Adobe
products include a blacklist of file types
which cannot be used as attachments
and, if they are included using external
tools, they will not be executed on click.

During our OSINT activity we intercepted

an interesting malicious PDF featuring an
allowed embedded file that when execu-
ted with a single click by the user is able
to download and execute a malicious
payload, infecting the machine.

The sample analysed in this report con-
tains an embedded Microsoft Excel file,
as soon as the PDF file is opened Adobe
reader shows the user the dialog shown
in figure 1.

The prompt asks for confirmation before
executing the attachment, however it
includes a clever social engineering tech-
nique to trick the user into opening it.

Figure 1. Alert with social engineering technique

Malware Lab Analysis Report | 07

Figure 2. Contents of the embedded Excel file

Since the file name is chosen by the
attacker they used “has been verified.
However IMG, PDF, doc,” as name, indeed
the prompt shown in figure 1 is meant to
warn the user about the file but by
showing the arbitrary name the user may
believe that the file “has been verified”.
By looking carefully at the prompt, it is
possible to spot the trick by noticing the
quotes around the file name.

The misleading name, combined with the
prompt popping up as soon as the user
opens the file, leads the user to believe
this warning is about the PDF being
opened and not an attachment, which
makes it more likely that they will click
the OK button needed to proceed to the
next stage of the infection.

The weakness of this strategy is that it
only works with a specific language,
English in our case. A message containing
different languages used in the same text
is likely to rise suspicion in the user,
making it less likely that they will fall for
the trap.

Once the user presses the OK button the
embedded file is extracted to the “\Ap-
pData\Local\Temp” folder in the user pro-
file and launched; since it is an “.xls” docu-
ment, Excel will be launched to display it.
As shown in figure 2, the document
appears to include a few tables and
shows a message prompting the user to
enable editing, however these are just
static images to act as decoy while the
infection starts.

Malware Lab Analysis Report | 08

Figure 3. Mark of the Web

This document exploits the well-known
CVE 2017-11882* which is an arbitrary
code execution exploit inside Microsoft’s
Equation Editor. The condition for the
infection is that the target machine is not
patched for this CVE. The exploit uses
Office’s extension capabilities to load the
Equation Editor as a plugin, passing it the
exploit binary code, so there is no need to
use macros for this attack to work.

Depending on various factors such as the
source of the PDF file and the PDF reader

program, Excel may prevent from the
automatic execution of the exploit due to
a file attribute known as Zone.Identifier,
also known as “Mark Of The Web” or
MOTW** ***. This technology marks files
as downloaded from the internet and
allows applications that support it to
behave accordingly, for instance, Office
will open them in safe mode.

When a file is marked as such the
following is seen in Explorer’s file proper-
ties windows (figure 3).

The reason this depends on the application is that not all third-party programs properly
implement the MOTW attribute, for example they might not propagate it from archive
files to the extracted content or simply not support it at all.
In case this happens the user also has to press the “Enable content” button to start the
infection, that is why the document also includes a fake dialog prompting it.

Once the exploit is executed it will download a second stage payload from the internet
and execute it, we identified it as Formbook****.

Formbook is a type of malware first discovered in 2016 and employs the model of
Malware-as-a-Service (MaaS) which means its developers sell it to other threat actors
whom then can use it to attack companies.

https://nvd.nist.gov/vuln/detail/cve-2017-11882

https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked#how-office-determines-whether-to-run-macros-in-files-from-the-internet

https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked#mark-of-the-web-and-zones

https://app.any.run/tasks/73f33041-7652-402e-b3d8-469f02e7bf5c/

Malware Lab Analysis Report | 09

It is designed to steal various types of
data from infected systems, such as web
browser credentials, screenshots and
keystrokes. It can also download and
execute additional malicious files from a
remote server.

This malware is dangerous because it can
also compromise the privacy and security
of the victims, exposing them to identity
theft, fraud, blackmail or other cyberat-
tacks. The ability to download secondary
payloads denotes it can also exploit the
infected systems to perform malicious
activities such as spamming or Distribu-
ted-Denial-of-Service (DDoS) attacks.

The Equation Editor exploit used in this
sample has been patched for a long time,
so in updated environments this attack
should not pose much of a threat, howe-
ver the vector of files embedded in PDF
documents should not be taken lightly
because as we demonstrate in this
report, it can also be used to deploy novel
attack vectors that are not hardened as
well as Office. Some examples are One
Note or VHD files, which have been used
as infection vectors starting with the
rollout of Microsoft’s policy of blocking
macros by default in Office*.

https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked

Malware Lab Analysis Report | 10

3
Analysis

Malware Lab Analysis Report | 11

3. Analysis

We started to analyse the PDF using an
open-source tool called “peepdf”*, it
allows to inspect the structure of the PDF
file, analysing the various objects.

PDF files internally use a string represen-
tation for objects and they are often com-
pressed in order to save space for online
distribution. Looking at the binary con-
tent of the file in a hex editor is a quick
way to reveal if a file is compressed.

As expected, this sample is compressed
as well so the first step was to decom-
press it to obtain the plain text represen-
tation; for this we used another
open-source tool called “qpdf”**.

At this point using “peepdf”, we can per-
form a quick scan to detect any suspi-
cious objects in the file, figure 4 shows
two things that immediately arise suspi-
cion: a JavaScript element and an “Ope-
nAction” object which implies automatic
execution.

Figure 4. peepdf working on decompressed PDF

https://github.com/jesparza/peepdf
https://github.com/qpdf/qpdf

Malware Lab Analysis Report | 12

3.1 PDF file (Initial vector) -
Technical analysis and behaviour

As said before several elements caught our eye, in particular:

• The embedded file: is the next stage of the infection. We observed its behaviour in a
malware analysis sandbox.
• The JavaScript object: just like HTML pages, PDF documents can include JavaScript
code and unlike Office macros they are usually sandboxed, so cannot directly harm the
computer but as we will see, this script is part of the infection chain.
• The “OpenAction” attribute which is used to immediately invoke an object when the
PDF file is opened.

Using “pdf-parser*”, an open-source Python tool, it is possible to search for specific
strings in the file; searching “OpenAction” reveals it is referencing to the object with ID
of 5, which is the object containing the Javascript code. This link is visible in figure 5.

Figure 5. OpenAction linking to the JavaScript code

https://github.com/DidierStevens/DidierStevensSuite/blob/master/pdf-parser.py

Malware Lab Analysis Report | 13

The script in figure 5 uses the PDF-speci-
fic JavaScript API “exportDataObject”* o
open the embedded file, with the mislea-
ding file name that can also be seen in the
picture.

“exportDataObject” when called with the
“cLaunch” argument set to the value 2,

Due to the structure of PDF files, object 42 only contains more metadata of the embed-
ded file and not the actual content, which is what we’re looking for. To find it we followed
the reference chain until we located it with the full content in the object with ID 62; the
entire process is seen in figure 7.

instructs Acrobat to save the file attach-
ment to a temporary file and then to ask
the operating system to open it.

The file name is stored in the “Names”
element of the object with ID 8, which
references the embedded file with ID 42,
this is shown in figure 6.

Figure 6. Object 8

https://acrobatusers.com/tutorials/print/importing-and-exporting-pdf-file-attachments-acrobat-javascript/

Malware Lab Analysis Report | 14

Figure 7. Locating the embedded file content

Figure 8. Detect it easy file scan

Now that we know the ID of the binary content, we used the dump option of “pdf-par-
ser” with object ID 62 as shown in figure 8.

Malware Lab Analysis Report | 15

Figure 9. Detect it easy file scan

The extracted file is compressed with zlib* which is a standard compression algorithm
used in PDF files, “Detect it easy”** immediately detects it as shown in figure 9.

Figure 10. Detect it easy file scan

Since zlib is a well-known algorithm, many tools are capable of decompressing it. After
the decompression the sample was confirmed by “Detect it easy” in figure 10 as a
Microsoft Office file.

https://zlib.net/
https://github.com/horsicq/Detect-It-Easy

Malware Lab Analysis Report | 16

For this analysis we used the open-sour-
ce Python-based framework “oletools”*, a
suite of tools that can analyse Office
documents and other files that follow the
MS OLE (object linking and embedding)
standard.

To quickly tirage the file we used “oleid”, a
tool that helps the analyst detecting spe-
cific characteristics usually found in mali-
cious files and informing about possible
risks. The result is shown in figure 11 and
does not contain anything immediately
suspicious.

Figure 11. oleid results

3.2 Excel file (Second stage) -
Technical analysis and behaviour

https://github.com/decalage2/oletools

Malware Lab Analysis Report | 17

Figure 12. olevba is used to print the macro code, resulting in empty functions

The fact that it detected VBA Macros
could be alarming, however it also states
that there are no dangerous keywords, in
fact printing all the macro code (shown in
figure 12) embedded in the file reveals

that it only contains a few empty function
definitions. As said in the executive sum-
mary macros are not necessary for this
attack to work and it is unclear why these
empty functions were included.

The results obtained until now may mislead into thinking the file is safe, however there
is one last tool, we used to inspect the content of the document.

The structure of legacy Office files is called OLE compound object and follows the standard
specified in MS-CFB*. CFB provides a file-system-like structure within the file, storing
application-defined or streams of data. The tool “oledir” can list the content of these files
finally revealing something interesting: the class ID of the Equation Editor in figure 13.

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-cfb/53989ce4-7b05-4f8d-829b-d08d6148375b

Malware Lab Analysis Report | 18

Figure 13. Exploitation through an embedded file

The class ID is a GUID, a unique string,
used to identify objects in Windows’ COM
subsystem*, that in this case it is used to
load the Equation Editor at runtime.
All the registered class IDs are stored in
the system registry in the “HKEY_LO-
CAL_MACHINE\SOFTWARE\Classes\CL-
SID” key**.

As the tool suggests the Equation Editor is
known for its vulnerabilities. Signatures
from malware analysis on AnyRun*** sug-
gest that this document uses CVE

2017-11882, a memory corruption vulne-
rability which allows executing arbitrary
code. This exploit works from Microsoft
Office 2007 to Microsoft Office 2016.

Using 7-zip we directly extracted the data
that is passed to the Equation Editor so we
can analyse the exploit. Note that 7-zip is
a general-purpose archive tool and while it
supports OLE Office files, its extraction is
lossy and does not allow to reconstruct
the original file, therefore we only used it
to retrieve the exploit payload.

https://learn.microsoft.com/it-it/windows/win32/com/the-component-object-model

https://learn.microsoft.com/en-us/windows/win32/com/clsid-key-hklm

https://app.any.run/tasks/73f33041-7652-402e-b3d8-469f02e7bf5c/

Malware Lab Analysis Report | 19

Figure 14. XORsearch results

3.3 Equation editor exploit shellcode analysis

Using “XORsearch*” with the -W option allows searching through binary blobs for
common shellcode patterns used in exploits, it is possible to use custom rules but the
built-in ones are fairly exhaustive. The search results can be seen in figure 14.

XORSearch not only finds common shel-
lcode patterns but also variations derived
from common simple encryption sche-
mes, such as binary XOR or ROT opera-
tions and this is reflected in the results
shown above.

However, to narrow down the results we
made an assumption based on the con-
text: since we know this is an exploit, we
are looking for the shellcode that is used
as entry point. This means it should not
be encoded in any way otherwise it would
not be directly executable. This means
the only results relevant to us are the

ones starting with XOR 00. This is becau-
se the XOR 0 operation is a no-op and
effectively means those bytes are not
encoded.

The only two matches that respected this
assumption are the first two, because
both match an instruction sequence that
is common in shellcode. In this case it is a
“getEIP” function which is used to obtain
the address of the current instruction; this
is usually needed because shellcode does
not know its load address and needs to
calculate it to continue the execution.

https://blog.didierstevens.com/programs/xorsearch/

https://blog.didierstevens.com/2014/09/29/update-xorsearch-with-shellcode-detector/

Malware Lab Analysis Report | 20

Figure 15. scDbg - Output from shellcode emulation

To test if our results were correct, we
used an emulation tool called “scDbg*” to
simply execute the code in an emulator
and observe its behaviour.

This log clearly shows the behaviour of the payload:

• ExpandEnvironmentStringsW is used to generate the output path which points to
 a file named vbc.exe in the “Public” user profile folder.
• LoadLibrary and GetProcAddress are used to dynamically load the functions
 needed to download and execute the next stage.
• URLDownloadToFileW is used to download a file in the selected location.
• ShellExecuteW is used to finally launch the downloaded executable.

This concludes the infection stage of the attack; at this point the actual malware dyna-
mically downloaded by the exploit starts executing.

Emulating the file starting at the offset
specified in the first result of XORSearch
does not lead to anything interesting,
however the second result contains valid
x86 code. (see figure 15)

https://github.com/dzzie/SCDBG

Malware Lab Analysis Report | 21

3.4 Formbook - Dynamic analysis

Formbook is a stealer malware sold on
underground forums as a Malwa-
re-as-a-service (MaaS) since 2016.
It uses multiple evasion and obfuscation
techniques to make both static and
dynamic analysis hard, indeed it will not
execute at all in a normal Virtual Machine.
Formbook is also known for its
masquerading capabilities: the whole
malware is written as shellcode and it
runs by injecting itself in various system
processes.

Once it acquires the information it’s
looking for, the data will be exfiltrated
with a custom encrypted protocol over
HTTP.

The vbc.exe file downloaded in the pre-
vious step is a .NET executable which
acts as a loader for Formbook. The mea-
surement of its entropy with “Detect it
easy” suggests that the file is packed or
contains compressed data, as seen in
figure 16.

Figure 16. Sections and entropy from tool Detect it easy

Malware Lab Analysis Report | 22

To bypass the packer and rapidly obtain
proof of its malicious behaviour, we used
a dynamic approach by running it in a
malware analysis sandbox.

We observed that after several stages of
unpacking performed by relaunching
vbc.exe, finally a random system execu-

The processes highlighted in red indicate that there was some suspicious process
injection activity, at this stage of the execution it’s possible to dump either explorer.exe
or msdt.exe. We analysed them with open-source YARA rules* **, and they revealed the
presence of Formbook (which would have been impossible to do from the packed
vbc.exe file alone).

Subsequently we sniffed the internet traffic during the sample execution using “Wire-
shark***” and intercepted a lot of communication attempts towards various servers
(see figure 18). Formbook is known to use many decoy IPs and domain names to hide its
real C2 address.

table is picked, and Formbook is injected
into it. The execution log in figure 17
shows that “msdt.exe” (Microsoft Sup-
port Diagnostics Tool) was selected.
Formbook then propagates by injecting
itself into “explorer.exe”, the picture
below shows this by highlighting explo-
rer.exe in red.

Figure 17. Processes monitored by the sandbox

https://github.com/ctxis/CAPE/blob/master/data/yara/CAPE/Formbook.yar

https://github.com/MalGamy/YARA_Rules/blob/main/formbook.yara
https://www.wireshark.org/docs/

Malware Lab Analysis Report | 23

Using the configuration extractor provided by AnyRun* it is possible to identify the real
C2 domain: “amanomarkets[.]com”.

However, observing the network traffic, we noticed substantial amounts of data sent
over to a decoy domain (Figure 19), that’s why even though it is reported as decoy we are
inserting it as IoC in this report.

Figure 18. Sniffed DNS requests

https://app.any.run/tasks/c8dfb9c7-f306-46c4-bc41-1ff51fd3c982/

Malware Lab Analysis Report | 24

Figure 19. POST method with encoded content towards malicious domain

Malware Lab Analysis Report | 25

Type Value Note

SHA-256 e60aaed3ef4eddce6b98d31146aed582d0d66807644a4b0b-
bf7b0ec6903b2260

SHA-256 d97e51d3b42566d127ff0a7fc1918ff31373102738cbcf925e-
af3b26f6d450e6

SHA-256 6202e16776594a286980b14732bd700c1754d653ee-
e224b6412d31cadd66d7da

SHA-256 f7480600459159284109-
dc29c25bf0226b8718b1a981293c5a2e81d0c0135f2f

IP

Domain

Domain

103[.]167[.]85[.]227

amanomarkets[.]com

laurashappydrivingacademy[.]co[.]uk

Table 1. Indicators of compromise

3.5 IOC

We collected the indicators of compromise related to the sample analysed in the
following table.

Note: detection rates are as of time of writing, given the low rates they are likely to increase over the course
of the following days as AV vendors update their products.

https://www.virustotal.com/gui/file/e60aaed3ef4eddce6b98d31146aed582d0d66807644a4b0bbf7b0ec6903b2260

https://www.virustotal.com/gui/file/d97e51d3b42566d127ff0a7fc1918ff31373102738cbcf925eaf3b26f6d450e6

https://www.virustotal.com/gui/file/6202e16776594a286980b14732bd700c1754d653eee224b6412d31cadd66d7da

https://www.virustotal.com/gui/file/f7480600459159284109dc29c25bf0226b8718b1a981293c5a2e81d0c0135f2f

https://www.virustotal.com/gui/ip-address/103.167.85.227

https://otx.alienvault.com/indicator/ip/103.167.85.227

https://www.virustotal.com/gui/domain/amanomarkets.com

https://otx.alienvault.com/indicator/domain/amanomarkets.com

https://www.virustotal.com/gui/domain/amanomarkets.com

https://otx.alienvault.com/indicator/domain/amanomarkets.com

Malware Lab Analysis Report | 26

Table 2. List of decoys

Moreover, we listed in table 2 many decoys retrieved from the malware configuration
extractor of Recorded Future* Triage Sandbox.

continentalcapitalmarkets[.]com

aestheticsclinic[.]ru319mjy[.]siteacameedure[.]space

inrylu[.]infokayedomingo[.]comai6bat[.]com

212homeimprovementcompany[.]comcarolsandova[.]comxquizitwebsites[.]africa

367946[.]comjiniu[.]viphmcr[.]store

cartershomeservice[.]comkoleencarrseitsrealtor[.]comlaurashappydrivingacademy[.]co[.]uk

freelancejournals[.]comaudreysobaramrealty[.]comeleccionespuebla[.]com

beyondbeautybedford[.]co.ukacapulcodreams[.]comanabolic-pharmacy[.]com

bastuochspa[.]sefarmakol[.]ruhohot[.]xyz

lozaedwinomar[.]comuptowntravel[.]netbikemenu[.]co[.]uk

aiqitu[.]comdydjse[.]cfdxsmasilela[.]africa

okstore[.]africaicreditpartners[.]comafghansharqlimited[.]com

bestautodrivingschool[.]com1wkejm[.]topcaplingerphotodrones[.]com

digitcourses[.]comfp-events[.]netbetonxetek[.]ru

angelovesnails[.]spacefeastandfast[.]comgoldsell[.]xyz

edortion[.]comyouhuidi[.]netdonutcosmetic[.]com

hesamusic[.]comwagadvisor[.]co[.]uk6tu04yd0[.]xyz

tip2love.co[.]ukhighperwednesday[.]comkietaj[.]xyz

airkiss-service[.]liveczghgdgs[.]comashleighj[.]com

oscar-framework[.]co[.]ukaddictsmovingmountainsinc[.]comnorthwheddonfarm[.]co[.]uk

griffmx[.]comdiakonia[.]africadermamedical[.]uk

gfdcourierservices[.]commp3cool3[.]netdrinkag1pro[.]com

https://www.recordedfuture.com/

Malware Lab Analysis Report | 27

4
Research on further

uses of Pdf
embedded files

Malware Lab Analysis Report | 28

4. Research on further uses
 of Pdf embedded files

The document analysed in this report
poses an interesting question: PDF files
are not commonly used as infection
vectors as the standard file format
blacklist is very strict and doesn’t allow
for any kind of executable formats, even
less common scripting language files
such as “.hta” or “.wsf” are blocked.
Thus, we investigated what kind of
attacks can slip through the default
configuration by using modern attack
vectors that have been introduced only
recently by threat actors.

“addJS()” allows to insert an arbitrary Javascript function in a PDF document, used the
same “exportDataObject” API used in the sample, the inserted code is automatically
executed by the PDF reader once the file is opened.

As first step we replicated the setup used
in this reports’ sample, that is, an embed-
ded file that is launched automatically
with a JavaScript code block. To do this
we used the open-source library
“PyPDF2*”, it provides a complete set of
tools to programmatically modify or, in
our case, forge PDF files.

The following code snippet is enough to
produce one such PDF file, the key
functions used are “addJS()” and
“addAttachment()”.

https://pypi.org/project/PyPDF2/

Malware Lab Analysis Report | 29

The parameter only accepts “data” values
of type “bytes”, so we use the “read()” fun-
ction to load the file’s content in memory.

We tested several less common file
extensions that can be used to execute
code, the ones that left us with positive
response are Microsoft OneNote files
(.one) and Virtual Hard Disk files (.vhd).
These are relatively new formats that are
being actively used for malware
distribution* **.

In both cases Acrobat exhibited the same
behaviour: as soon as the PDF is opened
the alert with the misleading name
pops-up and with a single click from the
user it will be opened. (figure 20) Just like
the sample in this report, it is possible to
carefully pick the file name in order to
deceive the user, for instance, by
matching the user’s operating system
language.

Figure 20. Acrobat prompting to open the file from our crafted PDF

“addAttachment()”, instead, allows to attach a file, it requires two parameters:
• Filename: the name used inside the PDF to identify the file.
• Data: the data to be inserted as an embedded file.

https://otx.alienvault.com/browse/global/pulses?q=onenote&include_inactive=0&sort=-modified&page=1&limit=10&indicatorsSearch=onenote

https://otx.alienvault.com/browse/global/pulses?q=vhd&include_inactive=0&sort=-modified&page=1&limit=10&indicatorsSearch=vhd

Malware Lab Analysis Report | 30

At this point the user is shown arbitrary content such as a malicious OneNote file with an
embedded executable.

In case of VHD files the system automatically mounts the virtual hard drive image and
opens it as a regular folder, this can contain arbitrary files with misleading icons to lure
the user into opening them.

Clicking the OK button leads to Acrobat executing the embedded file as in figure 21.

Figure 21. The OneNote document embedded in the pdf

Malware Lab Analysis Report | 31

5
Conclusion

Malware Lab Analysis Report | 32

Average users are inclined to be deceived
by social engineering techniques. Threat
actor techniques always evolve towards
new methodologies to improve the suc-
cess rate of their attacks.

PDF documents have usually been mani-
pulated by inserting a clickable malicious
URL into the content. However, the con-
tent must be well written and deceptive
to lead the victim to click it and download
the next stages, the number of steps
required makes it more likely for the user
to notice that something is amiss.

However, we demonstrated in this report
that PDF documents weaponised using
JavaScript code are more effective than

simple phishing and file type blacklists
haven’t kept up with modern infection
vectors.

Our recommendation is to disable Java-
Script from the various PDF readers:
Adobe has a dedicated option in settin-
gs*, Firefox’s “PDFJS” reader allows
disabling it by toggling“pdfjs.enableSc-
ripting” in “about:config”** while Google
Chrome doesn’t seem to have a strai-
ghtforward way of disabling it, in this
case we suggest using a third-party
extension such as UblockOrigin*** confi-
guring it to block JavaScript in PDF files or
prefer using a different reader. Some of
these options can be deployed through
Group Policy.

5. Conclusion

https://helpx.adobe.com/acrobat/using/javascripts-pdfs-security-risk.html
https://support.mozilla.org/en-US/questions/1333222
https://github.com/gorhill/uBlock

Defence Tech Holding S.p.A Società Benefit
Via Giacomo Peroni, 452 - 00131 Roma

tel. 06.45752720 - fax 06.45752721
info@defencetech.it - www.defencetech.it

