
#TinextaDefenceBusiness

DivulgeStealer
Malware Analysis Report

Malware Analysis Report | 02

Summary

Our Malware Lab 03

IoC 25

Run task 14

Process task 13

Conclusion 26

Third stage 11

Second stage 10

First stage 07

Analysis 05

Executive Summary 04

This document is protected by copyright laws and contains material proprietary to the Tinexta Defence. It or any
components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise
exploited in any manner without the express prior written permission of Tinexta Defence. The receipt or posses-
sion of this document does not convey any rights to reproduce, disclose, or distribute its contents, or to manu-
facture, use, or sell anything that it may describe, in whole or in part.

Malware Analysis Report | 03

Tinexta Defence Malware Lab daily performs dissection of malware with
the aim of timely understanding the technological evolutions of attacks,
consolidating the knowledge of necessary to make more effective and faster
the process of incidents responding, contributing to spreading information
about emerging threats into the expert’s community and among its clients.

Malware Lab analysts are continuously engaged in searching and
experimenting new analysis tools, for increasing accuracy and scope of action
with regard to the proliferation of new evasion and anti-analysis techniques
adopted by malware.

The Malware Lab is also committed to the development of proprietary tools for
malware analysis and supporting the management and response of incidents.

Besides malware analysis, Malware Lab ideated and implemented an automatic
process of extraction of Indicators of Compromise (IOC) that is daily run on
dozens of new malwares, intercepted in the wide for populating our
Knowledge Base.

Our Malware Lab

Corrado Aaron Visaggio

Group Chief Scientist Officer
& Malware Lab Director

a.visaggio@defencetech.it

Malware Analysis Report | 04

Executive Summary

This report focuses on DivulgeStea-
ler, a “Stealer” malware family that is
actively promoted in dark web
forums. Its first builder version is pu-
blicly available on GitHub¹. Based on
our research, there is currently limited
literature available for this malware
family, which is why our objective is to
contribute to the ongoing research
with additional insights.

We analyzed an infection chain that
starts with a Microsoft Word docu-
ment containing a malicious VBA
macro; as soon as the document is
opened, the macro will launch the
second stage.

The VBA macro retrieves a ZIP archi-
ve containing a Batch script from a
remote server, so that the file is later
extracted and immediately executed.

Such script proceeds to build an exe-
cutable from its encoded content,
which results in the third and final
stage of the infection chain.

The decoded executable is identified
as DivulgeStealer, a .NET-based ste-
aler that is capable of exfiltrating Di-
scord² accounts, browser credentials
and cryptocurrency wallets to an
attacker-controlled Discord server
used for C2 activity.

¹ https://github.com/PyDevOG/Divulge-Stealer
² https://discord.com (a popular online chat platform)

Malware Analysis Report | 05

Analysis

We started our analysis by leveraging the suite of Python tools called oletoos³,
useful for analyzing Microsoft OLE2⁴ files.

By running ftguess.py against the first-stage file named
Purchase_Inquiry_1.doc, the latter was identified as a MS Word 97-2003
Document file (MIME type applicaton/msword) with an OLE container.

Using oleid.py, we found that the document is not encrypted and contains
neither XLM macros nor external relationships, however it embeds some suspi-
cious VBA macros.

³ https://github.com/decalage2/oletools/tree/master/oletools
⁴ https://en.wikipedia.org/wiki/Compound_File_Binary_Format

Malware Analysis Report | 06

To assess the presence of such macros, the mraptor.py tool successfully
detected a suspicious macro with the AutoExec, Write and Execute flags set.
This goes beyond simple suspicion, as just the presence of the AW or AX flags
would be sufficient to raise concerns.

Through the olevba.py tool we are finally able to extract the embedded
macro stored in the ThisDocument.cls file, which simply consists of
non-obfuscated code.

In order to locate the malicious code, we used the oledump.py tool to list all
the directory entries contained in the document. As we can see in the figure
below, the OLE stream 'Macros/VBA/ThisDocument' with id 8 is marked with
an M, meaning that it contains a macro.

Malware Analysis Report | 07

First stage

In this section we proceed to analyze the VBA macro we have just extracted.

Both the Document_Open and the AutoOpen subroutines cause the custom
DownloadUnzipAndRun subroutine to be called as soon as the document is
opened by the user. The former is a handler for the Document.Open⁵ event,
while the latter is just a special case macro that is still used only for backwards
compatibility.

DownloadUnzipAndRun is the main subroutine in the document. Essentially, a
ZIP archive is downloaded to a folder with a randomly chosen name in the C:\
root folder and consequently extracted to the same location.

After the download is completed, a message box with the caption "File Error
loading,please sender.." is always shown to the user, and in the meantime
the Batch script extracted from the archive is finally executed, as shown in the
code provided below.

⁵ https://learn.microsoft.com/en-us/office/vba/api/word.document.open

Malware Analysis Report | 08

The directory used as the target location to download the archive is defined by
the following GenerateRandomValue function. After seeding the generator
using the Randomize function, it gets a random number in the range
[lowerbound, 9999990], since Rnd is either 0 or 1.

The downloadFile subroutine sends a GET request to the
http://portalsphere.free.fr/phUploader/uploads/ endpoint to download
the 1741130958.zip payload. It uses just two objects to accomplish the task:
Microsoft.XMLHTTP to create HTTP requests and ADODB.Stream to write
data streams.

Malware Analysis Report | 09

The binary data stream (StreamTypeEnum.1) is saved to the
C:\<randomNum>\1741130958.zip archive, overwriting it if already existing
(SaveOptionsEnum.2).

The Unzip subroutine extracts the files contained in the 1741130958.zip
archive to the same directory where it has been downloaded, i.e.
C:\<randomNum>\, as shown in the code below.

Malware Analysis Report | 10

Second stage

The extraction from the archive reveals the Ppo.bat, a Batch script whose
code is provided as follows.

Through the setlocal instruction, the enableextensions option adds
additional scripting features (although command extensions are enabled by
default), while enabledelayedexpansion allows delayed variable expansion
using !var! instead of %var% to retrieve the variable’s current value at runtime.
However, this feature does not seem to be used in this script.

As one could notice by the comment we added to the code, 318 echo
instructions needed to concatenate Base64-encoded strings to the target file
located at C:\Users\<user>\AppData\Local\Temp\i19ag96bvk.txt were
omitted for conciseness.

The built-in certutil utility decodes the Base64 content from the
i19ag96bvk.txt file and saves the output to the new
C:\Users\<user>\AppData\Local\Temp\i19ag96bvk.exe binary file. This
decoded executable is then launched in a new command window and the
original Base64 file is deleted upon completion.

In order to obtain the encoded file, we commented out the start command
and manually executed the Ppo.bat script. As a result, we confirmed that
i19ag96bvk.exe was a Portable Executable (PE) file. This was verified by
decoding the first Base64 string written to the file, which reveals the beginning
of a PE header.

Malware Analysis Report | 11

Third stage

The i19ag96bvk.exe binary file is a 32-bit executable based on .NET
Framework 4.8, whose original module name is Divulge.payload.exe.
Surprisingly, explicit references to the DivulgeStealer malware signature are
even present in the assembly's metadata.

Malware Analysis Report | 12

Below we provide a summary of the main file indicators.

Among the imported APIs, we immediately noticed a lot of crypto-related
functions.

Since the .NET sample is obfuscated, we used the de4dot tool to deobfuscate
it in order to analyze its source code.

It's worth noting that due to obfuscation we could not recover all the original
class and field names. Because of this, every code snippet we will provide
shows names which we have customly defined based on the sample's inferred
behavior.

The Main function consists of two asynchronous tasks: Process and Run.

Malware Analysis Report | 13

Process task

▪ Webhook is decrypted to
https://discord.com/api/webhooks/1343305947946418246/rWAzVQuv
Bs1EJslM5E87fzUyx76E83K9bSPagiaka8S-cBCs8TzKKpaN-xgIQ5SUC8qh,
a Discord webhook controlled by the attacker. Webhooks are often
employed as simple covert exfiltration channels because they can be
managed by just HTTP POST requests, so that the stolen data will show
up as a message in the attacker's chat;

▪ Version is decrypted to "v2.0", indicating the version of the current
DivulgeStealer sample;

▪ Mutex is decrypted to "68MbmzfhaB1WScnWxrkZ", which is the name of a
mutex object used to ensure that only an instance of the sample can run
at a time.

Upon execution, the sample initializes the following obfuscated settings:

The function responsible for decrypting the above properties takes the
Base64-decoded versions of encryptedData, key and iv, as seen in the next
figure. Decryption is performed using AES-256 in GCM chaining mode. The
cypherText is derived from encryptedData by excluding its last 16 bytes,
which are used as the authTag.

Malware Analysis Report | 14

Below is an example of the decryption of Webhook using the previously
described setup in CyberChef⁶.

The task starts by creating a unique temporary directory with a random
15-chars name in C:\Users\<user>\AppData\Local\Temp. This will be used to
gather all the data stolen from the machine.

By running as Administrator, the sample can modify the hosts file in
%SYSTEMROOT%\System32\drivers\etc\ to block communication with
common antivirus websites. To achieve this, it simply associates the 0.0.0.0
IPv4 address with every AV entry, effectively disrupting the related remote
services.

⁶ https://gchq.github.io/CyberChef

Run task

Malware Analysis Report | 15

Finally, the sample starts stealing sensitive data from the machine.
The targeted data consists of Discord accounts, browser credentials,
cryptocurrency wallets and system information.

The following figure illustrates how the sample checks the state of the
decrypted 68MbmzfhaB1WScnWxrkZ mutex and promptly terminates if
necessary. Such mechanism is designed to prevent multiple instances of the
malware from running at the same time.

To ensure that an outbound connection is still available for exfiltrating and
delivering data to the webhook, an infinite loop checks every minute whether a
GET request to the https://gstatic.com/generate_204 endpoint returns the
expected 204 HTTP code (No Content).

Then, the sample employs additional evasion and persistence techniques as
detailed below.

Evasion and persistence

Malware Analysis Report | 16

The IsRunningInVm function detects whether the sample is running in a
virtualized environment and, upon detection, terminates its execution.

To ensure that this works as expected, the sample goes through the following
phases:

It executes the wmic.exe csproduct get uuid command, a Windows
Management Instrumentation (WMI)⁷ query that retrieves the machine’s
UUID, which is then compared against a set of known machine identifiers;
It queries the machine’s hostname and username by respectively
referencing Environment.MachineName and Environment.UserName;
It reaches out to the http://ip-api.com/line/?fields=hosting URL to
check whether the system is identified as a hosted or cloud machine
through the hosting boolean field;
It checks all the running processes against a list of common analysis tools
and services, attempting to terminate any matching processes;
Finally, the sample checks if it is being debugged and terminates
accordingly.

⁷ https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-page

Malware Analysis Report | 17

The sample also checks whether the running instance is in one of the special
startup folders, namely C:\ProgramData\Microsoft\Windows\Start
Menu\Programs\Startup and
C:\Users\<user>\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup. If the sample is not found in either of these two
folders, it prompts the victim to be launched with Administrator permissions.

Moreover, the sample uses the attrib.exe +h +s command to set itself as a
hidden system file in order to evade detection⁸. By relying on the default
system settings, Windows will not show files marked as system files in the File
Explorer, even when the Hidden items option is checked.

Then, it proceeds to add itself to the exclusion list of Windows Defender
through the powershell Add-MpPreference -ExclusionPath command line,
so that it won’t be detected by the related service.

An additional step to prevent detection is to run the following command line -
which is stored as a Base64 blob - to completely disable the main security
measures of Windows.

The lists of elements serving as test cases are provided in the following figure.

⁸ https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/attrib#parameters

Malware Analysis Report | 18

Finally, if it has Administrator permissions and it isn’t already a copy, it copies
itself to the special CommonStartup folder with the <rand>.scr name, where
<rand> is a random 5-chars string in the [0-9A-Zaz] interval.

Most applications store their settings and access tokens in the
C:\Users\<user>\AppData\Roaming folder. The exact file names and
properties of common applications are also well-known.

Data harvesting

This sample seems to target only Discord accounts, their paid status called
“Nitro” and stored payment options. While it will attempt to read the stored
cookies of web browsers, it has specific code paths which target Discord
authentication tokens.

Chromium-based applications have multiple ways of storing local secrets.
The sample uses two possible methods for harvesting data from Discord
clients and browsers:

▪ MethodA: starting from the data folder of the specified program, it looks
recursively for .log and .ldb files in the leveldb subfolder. The
[\w-]{24,26}\.[\w-]{6}\.[\w-]{25,110} regex is used to match strings
resembling the format used for Discord authentication tokens.

Discord clients and web browsers

Malware Analysis Report | 19

▪ MethodB: starting from the data folder of the specified program, it looks for
.log and .ldb files in the Local Storage\leveldb subfolder. The regex
used is dQw4w9WgXcQ:[^.*\\['(.*)'\\].*$][^\"]*, where the leading
dQw4w9WgXcQ: part is just for obfuscation since it is later stripped off before
the actual matching. Depending on the target browser, this method requires
the local state key (the encrypted_key, protected with the Windows DPAPI⁹
and encoded in Base64) from the Local State file to decrypt the token
using AES-GCM.

Browser-related data is located in C:\Users\<user>\AppData\Local, except
for Opera, Opera GX and Firefox which are located in
C:\Users\<user>\AppData\Roaming.

The data stolen from all the browsers consists of credential logins
(username_value, password_value and origin_url) and saved cookies
(host_key, name, path, encrypted_value and expires_utc).

The Firefox browser is an exception because it involves a similar method that
uses the same regex as in MethodA but targets .sqlite database files, with no
decryption needed.

When a Discord client is detected, this sample attempts to collect the stored
information related to the account, such as token, username, id, mfa_enabled,
email, verified, phone and nitro. This last one represents the account’s
premium level.

Moreover, every time it collects an authentication token, it tries to get
additional information via the Discord cloud API. In particular, the following
endpoints are reached out:

▪ https://discord.com/api/v10/users/@me is used to validate tokens
extracted from web browsers and gather the user’s information;

▪ https://discordapp.com/api/v9/users/@me/billing/payment-sources
is used to get the list of payment methods saved in the account that was
stolen;

▪ https://discord.com/api/v10/users/@me/outbound-promotions/codes
is used to get the list of paid gift codes that have been previously bought by
the owner of the account.

⁹ https://en.wikipedia.org/wiki/Data_Protection_API

Malware Analysis Report | 20

Full list of targeted Discord clients:

▪ Discord, Discord Canary, Lightcord and Discord PTB.

Full list of targeted browsers:

▪ Opera, Opera GX, Comodo Dragon, Slimjet, UR Browser, Amigo,
Torch, Kometa, Orbitum, CentBrowser, 7Star, Sputnik, Vivaldi,
Chrome SxS, Chrome, Firefox, Epic Privacy Browser, Microsoft
Edge, Uran, Yandex, Brave and Iridium.

Data related to cryptocurrency wallets is also located in
C:\Users\<user>\AppData\Roaming, except for Coinomi which is stored in
C:\Users\<user>\AppData\Local.

To find where the actual wallets are located, the sample searches starting from
the drive letter of every detected drive and attempts combinations of the
Windows, Programs Files, Program Files (x86), ProgramData and AppData
folders to recursively find an existing wallet folder using up to 3 levels of depth
(e.g. \Coinomi\Coinomi\wallets\). Once a wallet folder is found, it gets
copied to the right location mirrored in the temporary working directory.

Full list of targeted cryptocurrency wallets:

▪ Zcash, Armory, Bytecoin, Jaxx, Exodus, Ethereum, Electrum,
AtomicWallet, Guarda, Coinomi, Bitcoin, Litecoin, Dash,
Dogecoin, Monero, Ripple, Stellar, Binance, Tron, VeChain,
Polkadot, Cardano, Tezos, Zilliqa and Neo.

Cryptocurrency wallets

Malware Analysis Report | 21

Screenshots

Additionally, the sample is capable of capturing screenshots of all the screens
that are currently connected to the system.

Data collection

Starting from C:\Users\<user>\AppData\Local\Temp\, all the data collected
so far is saved to the paths listed below, using the specified content template
(if applicable) and a "======Divulge Stealer=====" string header:

▪ "Messenger\Discord\Discord Accounts.txt":

▪ "Browsers\Passwords\<browserName> Passwords.txt":

▪ "Browsers\Cookies\<browserName> Cookies.txt":

Malware Analysis Report | 22

Data exfiltration

The first FALSE/TRUE field indicates whether the cookie will expire, while the
second one indicates if the host starts with a "."

▪ "Display\Display-<N>.png"

The populated temporary folder is finally compressed into a ZIP archive in
C:\Users\<user>\AppData\Local\Temp with a random 15-chars file name and
the .ligma extension. Then, the sample proceeds to build the payload which
will be sent to the Discord webhook through a POST request, as illustrated in
the next figure.

Some more information is gathered before assembling the final payload: a GET
request to the http://ip-api.com/json/?fields=225545 API is sent using
the 225545 bitmask, returning the values of the following fields: status of the
request, country, regionName, timezone, reverse, mobile and proxy.

▪ "Wallets\<walletPath>\Source.txt":

Malware Analysis Report | 23

Moreover, the sample retrieves different system information to fingerprint the
machine through environment variables and WMI queries:

▪ computerName from Environment.MachineName;
▪ computerOs through wmic.exe os get Caption;
▪ totalMemory through wmic.exe computersystem get

totalphysicalmemory;
▪ uuid through wmic.exe csproduct get uuid;
▪ cpu through powershell.exe Get-ItemPropertyValue -Path

'HKLM:System\CurrentControlSet\Control\Session
Manager\Environment' -Name PROCESSOR_IDENTIFIER;

▪ gpu through wmic path win32_VideoController get name;
▪ avName through powershell.exe Get-WmiObject -Namespace

"Root\SecurityCenter2" -Class AntiVirusProduct | Select-Object
-ExpandProperty displayName.

The Discord payload is then assembled as follows:

• The content, which is the actual message, can be either empty or
@everyone to effectively notify each member of the attacker’s channel;

▪ The embed, which is a special Discord message type embedding images and
links, encapsulates the network address info and the machine’s
specifications as shown in the picture below.

Malware Analysis Report | 24

Once done, the sample uses application/json as the accepted media type
and "Opera/9.80 (Windows NT 6.1; YB/4.0.0) Presto/2.12.388
Version/12.17" as the user-agent. After sending the assembled embed to the
webhook, it relies on the multipart/form-data POST content type to finally
deliver the compressed archive through a form:

▪ The form’s content is the whole content of the archive itself;
▪ The form’s name is "file";
▪ The form’s filename becomes "Divulge-<computerName>.zip".

Finally, the sample deletes the delivered archive and its temporary data folder.
Before terminating its execution and if the running process is not from the
startup copy, the sample deletes itself through the cmd.exe /c "ping
localhost && del /F /A h <assemblyLocation> && pause" command
and exits.

Malware Analysis Report | 25

IoC
In the next table we inserted IoC of the infection chain analyzed in this report.

Type Value Note

SHA-256 25dceeb01ea833d9dfd54c933f7c0f019079e86
db670af3e2171c31e730dbe77

Purchase_Inquiry_1.doc
with macro (first stage)

SHA-256 4b8a741a38ecdd6e604345deed59c8e7f13c5
979c1bc7e909b513f80ef83a890

1741130958.zip
(second stage)

SHA-256 2e09cbdd78c3b2c3f21a16fc59e3cf1071
c353e78ab50797ef9aa980af023de6

PPo.bat
(second stage)

SHA-256 af9fde17347046f6f06ddeafe49d2cf8638a22d
5130f6ebf23fd2a1c8d51dba7

Divulge.payload.exe
(third stage)

URL C2 to download
PPo.bat

http[:]//portalsphere[.]free[.]fr/phUploader/
uploads/1741130958.zip

https://www.virustotal.com/gui/file/25dceeb01ea833d9dfd54c933f7c0f019079e86db670af3e2171c31e730dbe77

https://www.virustotal.com/gui/file/4b8a741a38ecdd6e604345deed59c8e7f13c5979c1bc7e909b513f80ef83a890/detection

https://www.virustotal.com/gui/file/2e09cbdd78c3b2c3f21a16fc59e3cf1071c353e78ab50797ef9aa980af023de6

https://www.virustotal.com/gui/file/af9fde17347046f6f06ddeafe49d2cf8638a22d5130f6ebf23fd2a1c8d51dba7

https://www.virustotal.com/gui/url/1be722312467012f6be1f7efaed35f4702d41bd6136bd340d4747cfba64cc8b0

Malware Analysis Report | 26

Conclusion

The analysis of DivulgeStealer reveals a multi-stage infection process that
leverages the common entry-point of a malicious Office document. The last
stage of the infection delivers a .NET-based executable that exfiltrates
sensitive information.

This malware targets Discord accounts, browser credentials, and
cryptocurrency wallets, showcasing its capability to cause significant damage
to individuals and organizations.

The use of obfuscation techniques and evasion methods highlights the need
for robust security measures to detect and mitigate such attacks. In particular,
EDR software should be able to detect covert-channel exfiltration when a
process that is not a browser attempts to communicate with the Discord API.

In corporate environments, end-users should not have administrative
permissions, and where possible, network monitoring should be used to detect
the specific behavior of this kind of malware.

#TinextaDefenceBusiness

Via Giacomo Peroni, 452 - 00131 Roma
tel. 06.45752720 - info@defencetech.it
www.tinextadefence.it

Defence Tech | Next |
Foramil | Donexit | Innodesi

