
#TinextaDefenceBusiness DFIR

eBPF for Digital Forensics
& Incident Response:
observability and proactive
actions at kernel level

DFIR | 02

The DFIR Group of Tinexta Defence is a Threat Response Unit
specialising in digital forensics and incident response. The Group
supports businesses and public administrations in managing security
incidents and producing digital evidence with probative value.

The Group's activities integrate multidisciplinary skills and are
divided into four main areas:

▪ Incident Response: rapid response capabilities to contain,
eradicate and mitigate incidents, reducing operational impact;

▪ Court-Appointed and Party-Appointed Technical Expert Services:
IT expertise in line with chain of custody best practices, in support
of judicial context;

▪ Forensic Readiness: preventive preparation of processes,
technologies, and standards to ensure accurate, complete, and
verifiable data collection;

▪ Research and Innovation: experimentation with advanced
technologies such as eBPF, kernel telemetry, AI for anomaly
detection and container forensics to anticipate threats and
develop next-generation tools.

As a Threat Response Unit, the DFIR Group supports Security
Operations Centers (SOCs) and organisations in proactive detection,
threat hunting and cyber crisis management, as well as post-event
investigation.

The Group's mission is to raise the level of security and resilience of
critical infrastructures and information systems by combining
scientific rigour, technological innovation and operational capabilities
to support digital defence and support the judicial process.

DFIR | 03

Summary

Main features of eBPF 08

Observability on Linux systems 06

Introduction 05

Abstract 04

Conclusions and future developments 16

Tracking activities performed via SSH 11

DFIR | 04

Abstract
The growing complexity of cyber attacks requires solutions capable of ensuring
deep and timely visibility at the operating system level, minimising performance
impact and preserving the forensic value of the data collected.

In this context, eBPF (extended Berkeley Packet Filter) technology is establishing
itself as an innovative tool for Digital Forensics & Incident Response (DFIR),
enabling the secure execution of custom programs directly in the Linux kernel.

This paper explores the potential of eBPF in DFIR, with a focus on two main areas:

▪ Advanced observability, through the tracking of critical activities such as SSH
sessions, executed commands and user changes, ensuring the completeness
and integrity of telemetry;

▪ Proactive defence, through control mechanisms capable of blocking con-
nections to malicious IP addresses, transforming event collection into a tool
for immediate reaction.

The proposed solution integrates aspects of forensic readiness (temporal accu-
racy, integrity and RFC 5424 log format) with operational security features,
laying the foundations for a faster, more reliable DFIR approach that can be inte-
grated with SOC and SIEM tools.

The results highlight how eBPF can be a strategic technology for the next gene-
ration of investigation and response tools, opening research and development
scenarios related to container security, multi-event correlation and Machine Le-
arning applications for kernel-level anomaly detection.

Authors:

▪ Marco Tinti: Team Leader DFIR
▪ Riccardo Luzi: Forensics Analyst
▪ Andrea Mura: Malware Analyst

DFIR | 05

Introduction
In DFIR (Digital Forensics and Incident Response), having sufficient high-quality
data available is crucial for conducting effective analysis.

The greater the visibility of operations within a system, the greater the ability to
carry out accurate and comprehensive investigations. Similarly, the timeliness of
information gathering has a decisive impact on the outcome of activities.

In Linux-based systems, numerous approaches and technologies exist for moni-
toring activities in a timely and thorough manner. These often involve programs
running at the operating system level that exploit the kernel's privileged position
to observe and control the entire environment.

One such solution is eBPF (extended Berkeley Packet Filter)¹, which is a particu-
larly powerful tool for improving the observability of a Linux system. This techno-
logy enables custom code to be executed in response to specific kernel or user
space events without the need to modify or recompile the kernel itself. The code
is first compiled into bytecode, then executed within a virtual machine integra-
ted into the kernel. A Verifier then ensures the code's security and stability.

Unlike traditional kernel modules:

▪ it does not access kernel memory directly, which reduces the risk of
crashes and vulnerabilities;

▪ it can be loaded and removed dynamically without the need to restart
the system;

▪ it is event-driven and activated by predefined or custom hook points
(e.g. syscalls, network events or tracepoints).

Thanks to these features, eBPF offers advanced observability, minimal perfor-
mance impact and proactive capabilities, such as blocking connections or mo-
difying system behaviour in response to events.

¹ https://ebpf.io/

DFIR | 06

The proposed system demonstrates a potential application of eBPF technology
in this field by collecting information about activities performed via SSH
connections to a Linux server. It also demonstrates how this technology can be
used for proactive system protection, proposing a solution to block network
connections directed to a specific IP address in a user-configured list.

Observability on Linux systems
Observability is now a fundamental capability both for assessing the performan-
ce and status of a system, and for enabling effective security solutions.

It refers to the ability to understand the internal state of a complex system based
on its external outputs. Enhancing this capability provides a more comprehensi-
ve view of ongoing activities, enabling the identification of threats in real time
while giving a robust foundation for post-incident analysis. Thanks to its privile-
ged position that allows it to monitor and control the entire environment, the
operating system is the ideal place to implement observability tools.

In Linux, there are various methods of extending the kernel's capabilities accor-
ding to operational requirements.

One approach is to modify the kernel source code directly. While this solution
enables intervention in any part of the kernel to adapt it to specific needs, it
requires an extremely in-depth knowledge of the codebase.

It also entails limitations in terms of portability between different Linux distribu-
tions or versions, and since each change must be approved by the development
community, there can be waiting times of months or even years.

Alternatively, kernel modules can be used. These are object files containing code
that extend the kernel's functionality at runtime and can be loaded and removed
dynamically, on-demand. Many hardware device drivers, for example, are imple-
mented as kernel modules.

DFIR | 07

Unlike direct kernel modification, using modules allows you to extend the ker-
nel's functionality immediately without waiting for community approval, and
there are fewer portability issues.

However, if a module's code is not carefully developed and reviewed with
respect to the kernel version in which it is to operate, it can introduce vulnerabi-
lities or cause system crashes. This is where eBPF comes in: a technology that
enables custom code to be written, loaded, and removed dynamically to expand
the capabilities of the kernel.

Although eBPF and modules share the ability to be executed at runtime, there is
one fundamental difference: programs are executed within the eBPF Virtual Ma-
chine, which is an isolated environment operating on dedicated virtual registers.

This approach drastically reduces the risk of introducing vulnerabilities or insta-
bility, since eBPF code does not interact directly with kernel memory.

Furthermore, the Verifier reduces the risk of kernel crashes during execution.
This component analyses the program before loading, evaluating all possible
execution paths and examining the instructions in logical order. The main checks
performed include:

▪ Memory access control: it ensures that BPF programs only access the
memory they are authorised to access and do not exceed specific limits. For
example, when accessing an array, it is necessary to ensure that the index
does not exceed the array's limits;

▪ Checking pointers before dereferencing: one way to cause a program to
crash is to dereference a pointer with a value of 0 (also known as NULL). To
prevent this, the Verifer requires an explicit check before actually accessing
the pointed value;

▪ Run to completion: it ensures that the eBPF program runs to completion and
does not consume resources indefinitely by placing a limit on the total
number of instructions it will process;

▪ Invalid instructions: it verifies that all instructions in a program are valid byte-
code instructions (e.g. recognised opcodes);

▪ Unreachable instructions: it rejects programs that contain unreachable
instructions.

DFIR | 08

Main features of eBPF
eBPF programs are known as “event-driven”: once they have been dynamically
loaded and associated with a specific event, they are only ever executed in
response to that event, without the system needing to be restarted.

In practice, execution occurs when the kernel or an application reaches a prede-
fined or customised hook point, depending on the use case.

Hook points

The predefined hook points include system calls, function entry and exit points
(fentry/fexit), network events and kernel tracepoints, among others.

If no predefined hook points satisfy a particular use case, eBPF programs can be
anchored almost anywhere in the kernel or user space applications using kernel
probes (kprobe) or user probes (uprobe), respectively.

Let's take a closer look at the tracepoints, raw tracepoints and lsm used in the
demonstration in this article.

Tracepoints are marked points in the kernel code that remain stable between
different versions of the kernel, although an older version may not have the com-
plete set of tracepoints added in a newer version. The format of each tracepoint
describes the fields that it traces and therefore the information that can be
retrieved from it. This information can then be used to create a data structure
associated with a set of raw arguments when using a tracepoint-type program.

For better performance, raw tracepoints can be used, which are hook points that
allow access to raw arguments without the need to create a data structure or
perform the association.

In addition to collecting information from kernel functions, eBPF programs can
influence the kernel's behaviour in response to specific events to which the pro-
gram is attached.

DFIR | 09

This is possible thanks to the LSM interface, which provides a series of hooks
that can be activated just before the kernel acts on a data structure or critical
path related to system security. The function called by one of these hooks can
then decide whether to allow the action to be performed. For example, it can
prevent access to a specific file, change the permissions of a folder or contact
an IP address. It is important to note that BPF LSM is supported from kernel ver-
sion 5.7 onwards, and that specific kernel capabilities must be enabled to use
this type of hook.

Life cycle

Once the relevant hooks have been identified, an eBPF program can be created
using an existing toolchain that supports languages such as C and Rust. This
program can then be converted into bytecode, which is the format expected by
the kernel.

This program is then loaded into the kernel using the bpf system call. Typically,
this is done using one of the many available eBPF libraries that allow the user
space part of the system to be developed in languages such as C, Rust, Python
and Go.

Once loaded, the eBPF program undergoes the checks performed by the verifier
described in the previous chapter. If these checks are passed, the Just-in-Time
Compiler converts the program's generic bytecode into the machine-specific
instruction set. This makes the program as efficient as natively compiled kernel
code or code loaded as a kernel module.

DFIR | 10

Maps and data structures

The concept of eBPF Maps is used to make the collected data usable by both
other eBPF programs and applications in user space. These data structures are
used to store and share data in the eBPF ecosystem and include hash tables,
arrays, ring buffers and LRU (Least Recently Used) structures, among others.

To interact with these maps and specific kernel data structures, eBPF programs
must use dedicated helper functions. These helper functions provide a stable
API (Application Programming Interface) that avoids compatibility issues
between programs and different kernel versions.

Security

Due to the capabilities and potential of eBPF programs, security is of paramount
importance.

For this reason, several security measures are in place:

▪ Generally, an eBPF program can only be loaded into the kernel if the process
loading it is running in privileged mode (root), or if the CAP_BPF capability is
enabled. Alternatively, unprivileged eBPF can be enabled to allow non-privi-
leged processes to load eBPF programs. These programs are still subject to
restrictions in terms of functionality and kernel access;

▪ Every eBPF program loaded must pass the checks performed by the Verifier;
▪ Once these checks have been passed, the program undergoes a hardening

process that includes setting the memory used by the program to read-only
mode and obscuring the constants in the code;

▪ While running, an eBPF program cannot access arbitrary areas of the kernel's
memory directly. Access to data and structures outside the program's context
is only permitted via helper functions, ensuring consistent and secure access
and changes.

DFIR | 11

Tracking activities performed
via SSH
A system for tracking SSH connections on a Linux server is presented as a
practical example of a potential application of eBPF programs in the DFIR field.

The aim is to monitor activities performed via SSH connections from initial con-
nection to disconnection, paying attention to the commands executed by con-
nected users.

Some information is also correlated to enable continued tracking of activities
with the original addresses and users, even in the event of a user change made
with dedicated commands or via an SSH connection to localhost.

Finally, connections to specific IP addresses are blocked if they are present in a
user-configured blacklist (e.g. a list of IP addresses known to be linked to mali-
cious C2 servers).

Tracking SSH sessions

When an SSH client connects to a server, an sshd process invokes the getpeer-
name system call to retrieve information about the address of the peer con-
necting to a specific socket.

Using a tracepoint on this system call makes it possible to retrieve the IP address
and port of the connected client.

After a series of operations, a clone of the sshd process creates a shell by
invoking the execve system call to execute /bin/bash. From this point onwards,
every command executed using this shell will have the PID (Process ID) of the
process that created the shell as its PPID (Parent PID).

DFIR | 12

The sched_process_exec tracepoint is activated every time a program is execu-
ted and can be used to collect information about the executed command, the
path of the executed file, and any arguments passed to it.

Furthermore, eBPF helper functions can be used to obtain information about the
PID, Parent PID and UID of the process that activated the eBPF program.

Changing user via command

When a user switch is performed using the su command, several processes are
created in succession before the new login shell is created. This causes the refe-
rence to the PID of the process that created the initial shell to be lost.

This results in a loss of correlation between the new commands executed and
the SSH session information relating to the initial source IP address, source port
and user.

To address this issue, the sched_process_fork tracepoint is employed to moni-
tor the relationships between the parent process and each new process as they
are created, enabling any new shells to be linked to the original. The fork event
chain is tracked using an LRU map to limit memory consumption and avoid
overflow in high-load environments.

Consequently, even when a user switches via the su command, it is possible to
trace back to the initial user, together with the IP address and port of the con-
nected client.

DFIR | 13

Changing user via local SSH connection

In the event of a user change initiated by starting a new SSH session to localhost
(e.g. user2@localhost), tracing the creation of processes is insufficient for tra-
cing the original session's information.

A new sshd process is created to manage the new session, and this process is
not in the child chain of the process that created the initial shell.

To trace the desired data, a tracepoint is used on the getsockname system call.
When a user starts a new session locally, an ssh process uses this system call to
retrieve information about its IP address and port.

Conversely, the new sshd process uses getpeername to retrieve the IP address
and port information used by the connected client.

This information can be used to obtain the PID of the ssh process and trace the
process chain to find the original session information.

Therefore, even if the user switches to a new SSH connection, it is possible to
trace the original user, along with the IP address and port of the connected client.

Blocking IP addresses

Unlike other systems, the proposed system does not passively collect informa-
tion of interest; it also allows users to proactively block connection attempts to
specific IP addresses.

A dedicated map is used to pass a list of configured IP addresses from the appli-
cation in user space to the eBPF program.

The eBPF program then uses a hook provided by the LSM interface, which is
activated when processing an invocation of the connect system call.

DFIR | 14

The connect arguments can be used to trace the IP address to which the calling
process is trying to connect. If this IP address is present in the configured list,
the eBPF program alters the return value of the connect system call, thus
blocking its execution. It also instructs the application in the user space to gene-
rate an alert to indicate possible suspicious activity.

The following code snippet illustrates a basic example: the socket_connect type
LSM hook uses the -EPERM return code to block the connection to a specific
destination IP address configured by the user and, at the same time, track this
action with a kernel-level debug message via the bpf_printk function.

SEC("lsm/socket_connect")
int BPF_PROG(block_connection, struct socket *sock, struct
sockaddr *addr, int addrlen) {
 struct sockaddr_in *addr_in = (struct sockaddr_in *)addr;
 __u32 dst_ip = addr_in->sin_addr.s_addr;
 if (dst_ip == <IP_TO_BLOCK>) {
 bpf_printk("Blocking connection to %d\n", dst_ip);
 return -EPERM;
 }
 return 0;
}

DFIR | 15

Logging and forensic validity of data

The telemetry produced by the system is designed to have probative value and
Security Operations Center (SOC) operability. This considers three key princi-
ples: temporal accuracy, integrity, and verifiable provenance.

For each command executed via SSH, an event is recorded containing:

▪ Dual timestamp: monotonic time derived from bpf_ktime_get_ns() to ensure
the sequential ordering of events, as well as wall-clock time in UTC format for
external correlations;

▪ Boot ID: a unique system identifier used to distinguish reboots. This is retrie-
ved by reading /proc/sys/kernel/random/boot_id from user space and passed
to the kernel via an eBPF map;

▪ Sequence per CPU: an incremental counter that sorts events by core, which
is essential in multicore environments;

▪ Missed event counters: information on any data loss due to buffer overflows,
retrieved via bpf_ringbuf_query() to ensure transparency regarding log com-
pleteness;

▪ Original username and UID: the username and UID of the sshd process that
created the first shell;

▪ Current username and UID: the username and UID of the process that execu-
ted the current command;

▪ Source address: the IP address and port of the client that initially connected;
▪ Parent PID and PID: identifiers of the process and its parent;
▪ Executed command: the complete command, including the path to the binary

file;
▪ Arguments: parameters passed to the command.

Logs are generated for connection attempts to IP addresses on the configured
blacklist, containing the same set of information as above, but with an additional
flag to highlight suspicious activity.

This information is saved in a dedicated log file in RFC 5424 syslog format,
which supports structured data and enables integration with SIEM systems such
as ELK or Splunk. This format enables advanced queries on fields such as the ori-
ginal UID or IP address, facilitating forensic analysis and real-time correlations.

DFIR | 16

Conclusions and future
developments
eBPF technology has proven to be highly effective and promising in the fields of
system defence and incident investigation. The great freedom it gives users in
developing eBPF programs means it can be used in numerous vital cases for
protecting Linux systems.

However, it is important to bear in mind that some useful features of this techno-
logy are only available in more recent versions of the Linux kernel. Furthermore,
kernel capabilities must be enabled to use the technology, and these capabilities
may not be compatible with the security policies of some organisations.

Some future developments of the system described are:

▪ Proactive actions: taking further proactive actions towards suspicious pro-
cesses, such as connection blocking;

▪ Container visibility: given the growing and widespread use of containers and
microservices, information will be added about the containers within which
commands are executed;

▪ Correlation of other events: collecting information about other types of
events related to commands executed by connected users;

▪ Alert rules: adding a system of rules to generate alerts in certain situations.

Integrating Machine Learning techniques for anomaly detection based on eBPF
metrics is a promising area of future research. Open-source projects, such as
Falco (CNCF) , and recent academic research suggest that applying machine
learning (ML) to kernel-level telemetry can significantly improve the
signal-to-noise ratio. Some studies report reductions in false positives of
30–40% in specific contexts.

However, it is important to note that the system has limitations on kernels prior
to version 5.10, where some features, such as raw tracepoints and ring buffers,
may not be available. This requires alternative implementations with greater
overhead.

² https://falco.org/

#TinextaDefenceBusiness

Via Giacomo Peroni, 452 - 00131 Roma
tel. 06.45752720 - info@defencetech.it
www.tinextadefence.it

Defence Tech | Next |
Donexit | Foramil | Innodesi

